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Rigidity of Interfaces in the Falicov�Kimball Model
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We analyze the thermodynamic properties of interfaces in the three-dimensional
Falicov�Kimball model, which can be viewed as a primitive quantum lattice
model of crystalline matter. In the strong coupling limit, the ionic subsystem of
this model is governed by the Hamiltonian of an effective classical spin model
whose leading part is the Ising Hamiltonian. We prove that the 100 interface in
this model, at half-filling, is rigid, as in the three-dimensional Ising model.
However, despite the above similarities with the Ising model, the thermo-
dynamic properties of its 111 interface are very different. We prove that even
though this interface is expected to be unstable for the Ising model, it is stable
for the Falicov�Kimball model at sufficiently low temperatures. This rigidity
results from a phenomenon of ``ground-state selection'' and is a consequence of
the Fermi statistics of the electrons in the model.

KEY WORDS: Falicov�Kimball model; ground-state selection; rigidity of
interfaces; 100 and 111 interfaces.

1. INTRODUCTION

Domain boundaries can have important effects on the transport properties
of condensed matter materials. In some cases, transport is believed to occur
mainly or exclusively along domain boundaries.(35) This is related to the
drastic effect the presence of a domain wall, or interface, can have on the
low-lying excitations of the system. Therefore, it is important to study non-
-periodic equilibrium states, in particular interface states, in statistical
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mechanics, and to understand their stability, fluctuations, and low-lying
excitations.

Many phenomena in condensed matter physics, which are of current
interest, are intrinsically quantum mechanical in origin. Quantum effects also
play a crucial role in the properties of interfaces. There are, however, very
few rigorous results on interface states in quantum statistical mechanics. In
refs. 2 and 3 a general perturbation theory was developed, which, under
certain assumptions, shows that a small quantum perturbation does not
destroy an existing interface Gibbs state of a classical discrete spin model
(the so-called Dobrushin states).

In this paper we consider the opposite situation, namely, one in which
quantum fluctuations stabilize the interface against thermal fluctuations,
while the classical limit does not have a stable interface. We demonstrate
the occurrence of such an ``order by disorder'' effect, (21, 43) in a simple quan-
tum lattice model��the three-dimensional Falicov Kimball (FK) model
[See Section 2 for a description of the model]. We are motivated by recent
work(26) which demonstrates that, at zero temperature, in the two-dimen-
sional ferromagnetic XXZ Heisenberg model with Ising-like anisotropy the
quantum fluctuations stabilize the 11-interface (i.e., an interface in the
diagonal direction). In the present work we prove such an effect at finite
temperature for two interfaces in the FK model.

The FK model was chosen because its statistical mechanical properties
have been studied extensively (see, e.g., refs. 18�20, 22, 24, 27, 29, 33) and,
recently, convenient perturbation expansions have been developed for
it.(11, 23, 32, 33) We expect that the XXZ model in three dimensions also has
a stable 111 interface at sufficiently low temperatures. Its analysis is,
however, more involved due to the presence of gapless excitations in the
interface.(26, 31)

Our main result is that, in three dimensions, the FK model has a
stable 111 interface at sufficiently low temperatures. This should be com-
pared with the three-dimensional Ising model since, in the strong coupling
limit, the FK model can be considered as a perturbation of the Ising model
(see e.g., refs. 29, 32, 33). Dobrushin showed that the Ising model has 100-
interface states, but its 111-interfaces are expected to be unstable at any
finite temperature. It has been proved recently that in the zero-temperature
limit of the three-dimensional Ising model the 111 interface fluctuates.(25)

This is related to the degeneracy of the ground states with a 111-interface
which grows exponentially with the volume (the rate of exponential growth
may depend on the boundary conditions however! See ref. 41). In the FK
model this degeneracy is lifted. In this sense, this is an example of the
phenomenon of ``ground state selection''(21) by quantum fluctuations. We
refer to Section 2.2 for a detailed discussion of the 111 interface configurations.

462 Datta et al.



In ref. 24 Lieb and Kennedy showed how to study the FK model in
terms of an Ising-type model for the Ising configurations that is obtained
by taking the trace over the electron states for any given ion configuration.
The Hamiltonian for the ions can be explicitly computed to any order in
perturbation theory together with a bound on the sum of the higher order
terms [see Appendix A and ref. 32]. For the study of the 100-interface one
needs the explicit form of this Hamiltonian up to second order. For the
111-interface fourth order perturbation theory is needed. In principle, our
method could be used to study interfaces with more general orientations,
but higher order terms in the perturbation series will be needed; e.g., the
112 interface is infinitely degenerate at fourth order, but we expect it to be
stabilized at sufficiently low temperatures by the sixth order terms. There-
fore, one should expect that the Falicov�Kimball model has an infinite
number of interface phase transitions.

We follow Dobrushin(15) (see also refs. 5 and 6) in proving the exist-
ence of an interface by considering an effective two-dimensional model for
the interface. Although, this two-dimensional model turns out to be quite
complicated, and involves many-body interactions of arbitrarily long range,
we can analyze it with a Peierls-type argument. It is probably possible to
develop a general Pirogov�Sinai theory(2, 39, 40, 48) to treat this situation,
along the lines of refs. 12 and 37, but we found it more convenient to make
efficient use of simpler methods. The result is a more transparent and
relatively short proof.

Our main results are stated at the end of the next section. Our main
technical tool is the convergence of certain cluster expansions proved in
Appendix B. Appendix A contains the proof of a bound on the remainder
term in the expansion of the effective Hamiltonians for the ions. In Sec-
tion 4 we discuss the rigidity of a 100-interface, which is much simpler than
the case of the 111-interface treated in Section 5.

2. THE FK MODEL AND EFFECTIVE HAMILTONIANS

The Falicov Kimball (FK) model(16) is a lattice model of spin-
polarized electrons and classical particles (ions).(16) The electrons and ions
interact via a purely on-site interaction. The electrons can hop between
nearest neighbour sites of the lattices, but the ions are static. There is a
hard-core repulsion between the ions, which prevents more than one ion
from occupying a single lattice site. The presence or absence of an ion at
a lattice site x is described by a classical variable, W(x), which is equal to
unity if there is an ion at the site x and is zero otherwise. Let the number
operator of an electron at the site x be given by n=c-

xcx , where c-
x and cx

are the creation and annihilation operators of the electron at the site x. Let
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+i and +e denote the chemical potentials of the ions and electrons respec-
tively. Let Z3 denote an infinite cubic lattice, with unit lattice spacing, such
that the coordinates of the sites are given by half-integers. For notational
simplicity in our description of the interface, it is more convenient to con-
sider this lattice instead of Z3. The Hamiltonian of the model defined on a
finite lattice 4/Z3 is given by

H4(t, U )=H04(U )+tV4 (2.1)

where H04(U ) is a Hamiltonian which is given entirely in terms of an
on-site interaction as follows:

H04(U )=2U :
x # 4

W(x) nx&+e :
x # 4

nx&+i :
x # 4

W(x)

:= :
x # 4

80x (2.2)

The operator V4 causes electrons to hop between nearest neighbour sites
of the lattice:

V4=&t :
(xy)/4

(c-
xcy+c-

ycx)

=: :
X=(xy) /4

VX (2.3)

Here (xy) denotes a pair of nearest neighbour sites in the lattice. The
hopping amplitude of the electrons is denoted by t # R. The first rigorous
study of the above model was done by Kennedy and Lieb.(24) They con-
sidered the classical particles to be nuclei and the on-site interaction to be
the Coulomb attraction between nuclei and electrons. In accordance with
this interpretation, they chose the coupling constant U to be negative. They
proved that the ground states of this model display perfect crystalline
ordering for the choice

+i=+e=U (2.4)

the ions being arranged in a checkerboard configuration. The choice (2.4)
corresponds to a neutral model: the average number of electrons in the
lattice is equal to the average number of ions, both being equal to half the
number of lattice sites (half-filling).

The model described by the Hamiltonian H4(t, U ) for U<0, is mathe-
matically equivalent to the model with U>0 (see ref. 24) and there is a
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simple relation between the properties of the attractive model, U<0, and
the repulsive one, U>0. In this paper we work with U>0.

We study the FK model in the strong-coupling limit i.e., for U>>|t|,
and hence consider the hopping term tV4 to be a perturbation to the
Hamiltonian H04(U ). It is convenient to renormalize the hopping
amplitude t to unity. This amounts to the following rescaling:

U�t � U

;t � ; (2.5)

where ;=1�kBT (kB being the Boltzmann constant and T the absolute
temperature). In our expansions U &1 plays the role of a small parameter.

For a fixed value of the coupling constant U, the zero temperature
phase diagram of the unperturbed Hamiltonian H04(U ) in the plane of
chemical potentials can be easily obtained.(18) To obtain the ground states
of H04(U ), for any given set of values the chemical potentials + i and +e , we
only need to find the single-site configuration which minimizes 80x (2.2).
When both the chemical potentials are negative, the ground state
corresponds to all sites of the lattice being empty. In the rest of the (+i -+e)
plane, it is found that for values of the chemical potentials such that
+e<2U and�or +i<2U, there is no doubly occupied site at zero tem-
perature. For these values of the chemical potentials, the ground state
corresponds to an all-ion configuration if +i>+e with +i>0, and to an all-
electron configuration if +e>+i with +e>0. For 0<+ i=+e<2U all singly
occupied configurations are equally likely and hence the ground state is
infinitely degenerate. The origin and the point +i=+e=2U also correspond
to infinitely many ground states. At the origin, each site is either empty or
singly occupied, whereas at the point (2U, 2U ) each site is either singly-or
doubly occupied. At zero temperature, for +i>2U and +e>2U, every site
is doubly occupied by an electron-ion pair.

As in refs. 29, 32, and 33, we will rely on the fact that for U>c |t|,
where c is a positive constant, the ionic subsystem of the FK model defined
on a finite cubic lattice 4 can be described by an effective classical
Hamiltonian. We will study only the neutral model at half-filling, i.e.,
+i=+e=U. Then, it follows form the circuit representation of ref. 33 and
the bounds proved in Appendix A that the equilibrium states of the ions
are described by an effective classical Hamiltonian of the form

Heff
4 (U )=

1
4U

:
(xy) # 4

s$xs$y+R4(;, U ) (2.6)
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where

s$x :=2W(x)&1 (2.7)

The variable s$x can be interpreted as an on-site spin variable since s$x=1
if there is an ion at x and s$x=&1 otherwise. Note that Heff

4 (U ) depends
on ; through the remainder term R4(;, U ). This is unavoidable if one
wants an exact correspondence between the correlation functions of the
ions in the Falicov�Kimball model and the same correlation functions of
the effective classical spin model. In particular, if one writes R4(;, U ) as a
sum of products of the s$x variables, one sees that it still contains a nearest
neighbour contribution with a coefficient that tends to zero exponentially
fast as ; � �. As all our results are for ; and U sufficiently large, this
temperature dependence will be of no consequence however. Similarly, as
we will do later on (2.34) and (2.35), one can extract from R4(;, U ) the
leading contributions for the next-nearest neighbour and plaquette interac-
tions, which are independent of ;, and estimate the temperature dependent
corrections with the bounds proved in Appendix A.

All terms of higher orders in the perturbation parameter U &1, i.e., all
terms of order U &n, with n�3, are contained in the remainder R4(;, U ),
which, just as the leading term, depends on ; in an inessential way. Hence
we simply write it as R4(U ). This remainder is expressible in terms of local
classical interactions [RB(U )]:

R4(U )= :

|B|�2
B & 4{<

RB(U ) (2.8)

Here B denotes a connected set of lattice sites, i.e., if x, y # B then
there exists a sequence of sites x0=x, x1 ,..., xn= y such that x i # B and
|xi&xi+1|=1 for all i=0,..., n&1. The number of sites in B is denoted by
|B|. We refer to such a set B as a bond. A bond can be represented by a
graph, the vertices being the sites and the lines of the graph representing
nearest neighbour bonds between pairs adjacent sites. Let B denote the set
of all bonds in the lattice 4. For each bond B appearing in the above sum
(2.8), the interaction RB(U ) can be expressed as a product of two or more
on-site spin variables s$x with x # B.

Note that, for us, a bond is, by definition, a connected set. This is
convenient in combinatorial arguments and a natural choice in view of the
way perturbation theory produces long-range and multi-body interactions
as a composition of nearest neighbour hoppings. It does not exclude the
presence of terms of the form s$x s$y , with |x& y|�2, in the effective
Hamiltonian. Such terms are included in connected bonds B containing x
and y.
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A configuration on Z3, denoted by |, is therefore given by a set of
assignments [s$x]x # Z3 of s$x # [&1, 1] to each x # Z3. For any finite subset
Y/Z3, let |Y denote the restriction of the configuration | to the sub-
set Y. A boundary condition (b.c.) will be specified by a configuration |� ,
meaning that for any finite volume 4/Z3, the system is considered with
a fixed value for the spins on each x # Z3"4, determined by |� .

From Lemma 19 of Appendix A (in particular (A.75)) it follows that
for ; and U large enough, there exist positive constants, c1 and c~ 2 (with
c1 �U<1) such that:

v for |B|�3

|RB(U )|�c~ 2 \c1

U+
g(B)

(2.9)

where

g(B) :=n(B)&1 (2.10)

with n(B) being defined as the minimum length (in units of lattice spacing)
of a closed path which passes through all sites of B.

v while, for |B|=2,

|RB(U )|�c~ 2 \c1

U+
3

(2.11)

The latter bound (2.11) results from the following fact: We have that
g(B)=1 for |B|=2; however, the term in the effective Hamiltonian of
order U &1, has been extracted and is given by the first term on the RHS
of (2.6). The contribution from electron hoppings between nearest
neighbour sites, to the remainder term, are therefore of order U &3, as even
powers of U &1 do not occur in the expansion.

The above bounds imply that there exists a constant r>0 such that

:
B % 0

|RB(U )| erg(B)<� (2.12)

and hence the interaction [RB(U )] decays exponentially. Using the bound
(2.11), the effective Hamiltonian (2.6) can be written as follows

Heff
4 (U )=H (2)

04(U )+R �3
4 (U ) (2.13)
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with

H (2)
04(U )=

1
4U

:
(xy)/4

s$xs$y+ :

|B|=2
B & 4{<

RB(;, U )

=J(U ) :
(xy) # 4

s$xs$y (2.14)

where

J(U ) :=J(;, U )&
1

4U
+h.o.>0 (2.15)

the symbol ``h.o.'' denoting terms of higher orders in U &1 which are
bounded by aU &3, for some constant a>0. Throughout the rest of the
paper, whenever the symbol h.o. appears in a sum involving powers of
U &1, it will denote the presence of a correction term which is bounded by
a positive constant times the next odd power of U &1. The correction term
is an infinite series that can be computed order by order in perturbation
theory, and that has a dependence on ;. This temperature dependence is
inessential and we will routinely omit it from the notations. We will only
use that, for ;U sufficiently large, a bound of the form (2.9) holds. We refer
to Appendix A for the proofs of the bounds. A more general class of models
as well as a detailed discussion of the temperature dependence of the effec-
tive Hamiltonian is contained in ref. 32.

We define

R �3
4 (U ) := :

|B|>2
B & 4{<

RB(U ) (2.16)

The leading par H (2)
04(U ) of the effective Hamiltonian is identical to the

Hamiltonian of an antiferromagnetic Ising model with nearest neighbour
interactions of strength J(U ) in the presence of a magnetic field of strength h.

The fact that the Hamiltonian Heff
4 (U ) (2.13) is invariant under ``spin-

flip,'' is a consequence of half-filling. The leading part, H (2)
04(U ) (2.14), of

the effective Hamiltonian has two ground states in each of which the +'s
and &'s occupy alternate sites of the lattice, i.e., the antiferromagnetic Ne� el
states. Thus, to order U &1, the effective Hamiltonian governing the ionic
subsystem has a two-hold degenerate ground state, while for the original
unperturbed Hamiltonian H04(U ) (given by (2.2)) the ground state energy
is independent of the ion configuration. Hence, as far as the ionic sub-
system is concerned, the effect of the quantum perturbation tV is to select
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two ground state configurations from the infinitely many ground states of
H04(U ). This phenomenon in which the quantum perturbation lifts the
infinite degeneracy of the classical ground states is known as ``ground state
selection.''(21, 43) Moreover, for low enough temperatures, the characteristic
long range order of the Ne� el states persists under the action of the remain-
der R �3

4 .(11) The main purpose of this paper is to prove that a similar
phenomenon of ground state selection occurs for the 111 interface of the
FK model and that the selected interfaces are rigid, i.e., the interfaces
persist in the thermodynamic limit at finite but non-zero temperature. See
Section 5.

It will be more convenient for us to perform the transformation

s$x � sx=(&1)2 |x| s$x for all x=(x1 , x2 , x3) # 4 (2.17)

where |x|=x1+x2+x3 . The above transformation yields an equivalent
Hamiltonian with the leading part given by the ferromagnetic Ising model:

H ferro
4 (U )=&J(U ) :

(xy) # 4

sx sy (2.18)

where J(U ) is given by (2.15). Let us denote sx=1 by the symbol ``+'' and
sx=&1 by the symbol ``&.'' The two ground states of H ferro

4 (U ) are
denoted by s+ and s& and correspond to each site in the lattice being
occupied by a + and a & respectively. We refer to these two ground state
configurations and their low-temperature analogues as homogeneous phases.
For a finite volume 4/Z3, the boundary conditions defined

either by sx =+1 for all x # Z3"4
(2.19)

or by sx=&1 for all x # Z3"4

are referred to as homogeneous b.c.
It is an interesting question what boundary configuration of the effec-

tive spin system correspond to bona fide boundary conditions for the
original Falicov�Kimball model without introducing special boundary
interaction terms. It is not hard to see from the derivation of the effective
Hamiltonian in ref. 32, that the homogeneous b.c. discussed above, as well
as the boundary conditions employed later in this paper to construct inter-
face Gibbs states, can be achieved by imposing Dirichlet boundary condi-
tions for the electrons on a volume with includes the first boundary layer.
On the effective Hamiltonian, this has the effect of truncating the interac-
tions across the boundary to nearest neighbour interactions only, which is
inconsequential. This simple correspondence between boundary conditions,
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however, is only possible because we are considering spin-less fermions, at
half-filling and with nearest neighbour hopping only.

In more general situations natural boundary conditions in the original
system will lead to modified boundary interactions in the effective spin
system. The general strategy adopted in ref. 32 to address this problem is
to trace over all possible configurations of static fermions outside the
volume 4 under consideration. Due to the Pauli principle, each such con-
figuration of spinless fermions simply defines an excluded volume. This
means that the effective Hamiltonian describes a weighted average of Gibbs
states obtained with different Dirichlet-type boundary conditions for the
fermions. As the fermions can wander across the boundary of 4, the effec-
tive Hamiltonians thus obtained will have interaction terms of arbitrary
range across the boundary. As is clear from our analysis here, this kind of
``averaged'' boundary conditions can equally well be used to demonstrated
to existence of Gibbs states with interfaces.

As mentioned before, the purpose of this paper is to study the ther-
modynamic properties of the 100 and 111 interfaces of the three-dimen-
sional FK model. In finite volume, the presence of an interface can be
enforced by a suitable choice of mixed boundary conditions in the standard
way(15) (see Eqs. (2.20) and (2.21) below).

To construct the 100 interface Gibbs state we consider 4/Z3 to be
a parallelepiped centered at the origin. The 100 interface is orthogonal to
the vector n=(0, 0, 1). The boundary condition which leads to a 100 inter-
face (which we shall refer to as ``b.c. 1'') is given as the configuration [sx]
on the sites x=(x1 , x2 , x3) # 4c :=Z3"4 defined by

sx={+1 if x3�1�2
&1 if x3� &1�2

(2.20)

For an analysis of the 111 interface consider the intersection of a plane
passing through the origin and orthogonal to the vector n=(1, 1, 1) with
a cube 4/Z3. This intersection yields a plane bounded by a hexagon (as
shown in Fig. 1) which divides 4 into two equal volumes. To obtain a 111
interface we consider the spin variables sx (2.17) to have opposite values on
the two sides of this dividing plane.

More precisely, the boundary condition that leads to a 111 interface
(which we shall refer to as ``b.c. 2'') is given as the configuration [sx] on
the sites x=(x1 , x2 , x3) # 4c#Z3"4 defined by

sx={+1 if x1+x2+x3�1�2
&1 if x1+x2+x3� &1�2

(2.21)
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Fig. 1. The intersection of a finite cubic lattice 4/Z3 centered at the origin, with a plane
passing through the origin and orthogonal to the vector n=(1, 1, 1).

Each of these boundary conditions divide the volume 4 into two sub-
volumes (the configuration in the latter being given by the two homoge-
neous phases s+ and s&) and enforce the occurrence of an interface
(domain wall) pinned to the boundary of the volume. The residual free
energy per unit area of this interface is its surface tension and is denoted
by the symbol {mixed b.c.. It is defined by taking the difference of the free
energy of the system in the volume 4 under mixed b.c. and the free energy
corresponding to the homogeneous b.c.

{mixed b.c.= lim
4ZZ3

&
1

; |I4 |
log \5 mixed

4

5 hom
4 + (2.22)

where 5 mixed
4 and 5 hom

4 are the partition functions of the system in the finite
volume 4 w.r.t. mixed b.c. and homogeneous b.c. respectively (see Sec-
tion 3). The symbol |I4 | denotes the area of the portion of the ground
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state interface which is contained in the volume 4. Such a definition is
justified(34) since the volume contributions proportional to the free energies
of the coexisting phases, as well as the boundary effects, cancel and only
the contributions to the free energy of the interface are left.

The limit lim4ZZ3 is taken in a definite order: e.g., if the ground state
interface lies in a plane Pn , passing through the origin, which is orthogonal
to a non-zero vector n, then the dimensions of the lattice perpendicular to
the plane Pn are taken to infinity before the dimensions parallel to it are
taken to infinity. The symbol |I4 | denotes the area of the portion of the
interface which is contained in the volume 4.

It will be convenient to consider the relative Hamiltonian defined with
respect to the homogeneous phases s+ and s& . For any configuration s=
[sx]x # Z3 the relative Hamiltonian is given by

H4(s) := &J(U ) :
(xy) # 4

(sxsy&1)+ :

|B|�3
B & 4{<

8B(s)

:=H (2)
04(s)+R�3

4 (s) (2.23)

where

8B(s) :=RB(s)&RB(s+)=RB(s)&RB(s&) (2.24)

and J(U ) is given by (2.15). Here are henceforth the explicit U-dependences
of the relative Hamiltonian and its components have been suppressed for
notational simplicity.

Each configuration in a finite volume 4, with respect to fixed bound-
ary conditions (homogeneous or mixed) can be geometrically described by
specifying the Ising contours which are defined as follows:(34) We define a
face to be a unit square which bisects a nearest neighbour bond of the
lattice perpendicularly. To each nearest neighbour bond we can associate a
face. A face f belongs to 4 if at least one site of the corresponding nearest
neighbour bond is in 4. Given a configuration |4 on a finite lattice 4,
with b.c. |� , let S|� (|4) be the set of faces associated with nearest
neighbour bonds between opposite spins. Decompose S|� (|4) into maxi-
mally connected pairwise disjoint components. Each such component is
referred to as an Ising contour (or simply contour, if confusion is not likely)
and is denoted by the symbol #. For homogeneous b.c. the contours are
closed surfaces lying entirely within the volume 4. However, for mixed b.c.
there is necessarily one (and only one) contour which is pinned to the
boundary of the volume 4. This is the only infinite maximally connected
component of the set S|� (|4) and is referred to as the interface.

There is a one-to-one correspondence between spin configurations on
the lattice and non-intersecting families of contours 1=[#]: |4=|4(1 ).
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We shall refer to such families as compatible families of contours. In the
sequel we shall use the symbol # to denote both the contour and its
support. The number of faces in a contour # is denoted by |#| and satisfies
the bound |#|�6, since the lattice is three-dimensional. The energy of a
contour # is given by

E(#) :=H (2)
04(1 $ _ [#])&H (2)

04(1 $) (2.25)

for any set, 1 $, of non-intersecting contours, not containing #, such that
1 $ _ [#] is again a family of non-intersecting contours.

It follows from (2.23) that the relative energy of a configuration |4(1 )
is given by

H4(1 )=H (2)
04(1 )+R �3

4 (1 ) (2.26)

with

H (2)
04(1 )= :

# # 1

E(#) (2.27)

where

E(#)=2J(U )=\ 1
2U

+h.o.+ |#|=: J1(U ) |#| (2.28)

and

R�3
4 (1 )= :

|B|�3
B & 1{<

8B(1 ) (2.29)

The condition B & 1{< denotes that the above sum runs over all bonds
B such that B & #{< for some # # 1, i.e., the bond B intersects at least one
face of a contour # # 1. The quantity E(#) is the self-energy of the contour
# w.r.t. H (2)

04 . Its definition (2.28) implies that, for sufficiently large U, the
Hamiltonian H (2)

04 satisfies the Peierls condition:

E(#)�J |#| (2.30)

with a Peierls constant

J=c0U &1 (2.31)

where c0 is a positive constant. Moreover, from the definition (2.24) and
the bound (2.9) it follows that for |B|�3

473Rigidity of Interfaces in the Falicov�Kimball Model



|8B |�c2 \c1

U+
g(B)

(2.32)

with c2=2c~ 2 . The effect of the term R �3
4 (U ) is to modify the self-energy of

the contours and also to introduce interactions between the contours.
Hence the spin model is reformulated as a model of interacting contours.

This contour Hamiltonian can be used to prove the rigidity of the 100
interface. However, we show in Section 2.3 that, under the boundary condi-
tion b.c.2 (2.21), the leading part H (2)

04 of the Hamiltonian yields infinitely
many ground state interfaces in the thermodynamic limit. These interfaces
are characterized by the fact that they all have minimal area. We refer to
such interfaces as minimal area interfaces. Hence, to prove the rigidity of
the 111 interface we consider a more detailed decomposition of the relative
Hamiltonian in which all the terms up to order U &3 of the perturbation
series are computed explicitly and retained in its leading part H (4)

04 :

H4=H (4)
04+R �5

4 (2.33)

where

H (4)
04 =&\ 1

4U
&

11
16U 3+h.o.+ :

(xy)/4

(sx sy&1)

+\ 3
16U 3+h.o.+ :

|x& y|=- 2
x, y # 4

(sxsy&1)

+\ 1
8U 3+h.o.+ :

|x& y|=2
x, y # 4

(sxsy&1)

+\ 5
16U 3+h.o.+ :

x, y, z, t/P(4)

(sxsy szst&1) (2.34)

where P(4) is the set of plaquettes, each plaquette consisting of four lattice
sites forming a unit square.

The remainder R �5
4 is obtained from the series (2.29) defining R �3

4 by
subtracting all terms which depend on U &n with n�3. It is given by

R�5
4 = :

|B|>3
B & 4{<

8� B (2.35)
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with the potentials 8� B satisfying the bound

|8� B |�c2 \c1

U+
m(B)

(2.36)

where

m(B) :=max(5, g(B)) (2.37)

In the expression for the relative Hamiltonian H (2)
04 (2.23) the terms up to

order U &1 are computed explicitly by second order perturbation theory,
while the terms of order U &3 in H (4)

04 (2.34) are obtained by fourth order
perturbation theory. We shall refer to (2.23) as the second order decom-
position of the relative Hamiltonian, and (2.33) as its fourth order decom-
position.

In Section 5 we prove that from the infinite set of minimal area inter-
faces, and up to translations, a unique interface configuration is selected
(i.e., attributed minimal energy) by H (4)

0 . This interface and its translations
are referred to as ground state interfaces of the three-dimensional FK
model under the boundary condition b.c.2 (2.21). Hence the 111 interface
exhibits ground state selection. Further, we prove that the selected interface
is rigid in the sense that it persists under the action of the remainder
R�5

4 (U ) at sufficiently low temperatures, in the thermodynamic limit.
Our main results are that, for sufficiently large U, and at sufficiently

low temperatures, the Gibbs states obtained in the thermodynamic limit
4ZZ3 with the boundary conditions b.c.1 and b.c.2, describe rigid inter-
faces in the 100- and 111 directions respectively. For a precise statement of
our main results we introduce the following notations: Let ( ) [b.c.1] and
( ) [b.c.2] denote the expectation values in the (infinite-volume) Gibbs
states will the mixed boundary condition b.c.1 (2.20) and b.c.2 (2.21)
respectively. Further, we recall that for a site x=(x1 , x2 , x3) in the lattice,
sx denotes the on-site spin variable defined through (2.7) and (2.17). Using
these notations and definitions, we state our main results through the
following theorems:

Theorem 1. There exist positive constants U0 and D0 such that for
all U>U0 , and ;�U>D0 , the following bounds are satisfied:

(sx) [b.c.1]�1&2C0e&c$;�U for x3�1�2 (2.38)

and

(sx)[b.c.1]�&1+2C0e&c$;�U for x3� &1�2 (2.39)

where C0 and c$ are positive constants given in terms of U0 and D0 .
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Theorem 2. There exist positive constants U� 0 , D� 0 and D� $0 such
that for all U>U� 0 , ;�U>D� 0 and ;�U 3>D� $0 , the following bounds are
satisfied:

(sx) [b.c.2] �1&2[C� 0e&c";�U3
+C� 1e&c"1;�U ] for x1+x2+x3�1�2

(2.40)

and

(sx) [b.c.2] �&1+2[C� 0e&c";�U3
+C� 1 e&c"1;�U ] for x1+x2+x3�&1�2

(2.41)

where C� 0 , c", C� 1 and c"1 are positive constants given in terms of U� 0 , D� 0

and D� $0 .
To prove these results we follow the method introduced by

Dobrushin(15) and consider effective two-dimensional models of the 100-
and 111 interfaces, obtained by projecting the interfaces on the planes
defined by x3=0 and x1+x2+x3=0 respectively [see Section 1 and 2.2
for details] The rigidity of the interfaces follows from an analysis of the
low-temperature properties of these effective two-dimensional models.

2.1. The Geometry of 100 Interfaces

The geometry of the 100 interfaces of the FK model is the same as the
geometry of the 100 interfaces described by Dobrushin for the three dimen-
sional Ising model. Hence we refer to ref. 15 for the definitions of geo-
metrical objects which describe the interfaces and their significances as
configurations of a two dimensional (contour) model: the ceilings (which
project on to ground states of the two dimensional model), the walls
(which project on to the contours), and the standard walls (which project
on to the external contours).

2.2. The Geometry of 111 Interfaces

The geometry of the 111 interfaces of the FK model is much more
involved. Let I� denote the family of interfaces under the b.c.2 (2.21) and
I� denote its typical element. Such an interface is pinned at the boundary of
4 on the curve defined by

�4 & [(x, y, z) # Z3 | x+ y+z=0] (2.42)
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In this section we describe the underlying geometrical structure necessary
for the definition and study of the effective two-dimensional model for such
an interface.

For each integer n we define planes Pn/Z3/R3 orthogonal to the
vector n̂=(1, 1, 1), by Pn[(x, y, z) # Z3 | x+ y+z=n]. Let P denote the
plane in R3 which contains P0 . Let P denote the orthogonal projection
onto P and let P4 denote the portion of the plane P which is contained in
the volume 4.

An effective two-dimensional model for the 111 interface is obtained
by an orthogonal projection of the interface I� onto P. Its complete descrip-
tion requires the following ingredients:

1. A set of vertices V=V0 _ V1 _ V2 , where Vn mod 3#P(Pn), n # Z,
is a triangular lattice in P with lattice constant - 2. The set V also forms

a triangular lattice, but with lattice constant - 2�3.

2. A set of edges E=E01 _ E12 _ E20 , where Eij is the set of nearest
neighbour edges in the lattice Vi _ Vj . All edges have Euclidean length
- 2�3.

3. A set of triangles T consisting of all elementary triangles in V.

4. A set of rhombi R=R0 _ R1 _ R2 , where Ri is the set of all
rhombi formed by two triangles in T that share an edge e # E[012]"[i ] ,
i=0, 1, 2.

The set of vertices V is the projection of the vertices in Z3, and
P((x, y, z)) # Vi if and only if i=(x+ y+z) mod 3.

The set of edges E is the projection of the set of nearest neighbour
bonds in Z3. They are the edges of a triangular lattice with lattice constant
- 2�3. For each pair of distinct i, j # [0, 1, 2], the set of vertices Vi _ Vj

forms a triangular lattice Hij (also with lattice constant - 2�3), and with
edges Eij . Together the three Hij cover V twice.

As before, to each nearest neighbour bond in the lattice Z3 we
associate a unit square (face) which bisects it perpendicularly. Recall that
the vertices of such a face have integer coordinates. The rhombi in R are
the projections of these faces. Hence, an interface I� in the lattice 4 projects
onto a covering of the plane P4 with rhombi in R. We refer to such a
rhombus covering as a rhombus configuration or, for brevity, as an R-con-
figuration (to be distinguished from a configuration of Ising contours).

v A rhombus is said to be an overlapping one if it contains the projec-
tion of more than one face of the interface. Otherwise it is said to be non-
overlapping. Each triangle t in an R-configuration C4 necessarily belongs
to the projection of an odd number of faces of the interface. To each such
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triangle t we associate a number o(t) which we refer to as its overlap
number, and define as follows:

o(t) :=[the number of faces of the interface

whose projection contains t]&1 (2.43)

A triangle with a non-zero overlap number is referred to as an overlapping
triangle. It is evident that each overlapping triangle has an even overlap
number.

v Two non-overlapping rhombi which share an edge are said to form
a good pair if the angle enclosed by them is 2?�3, i.e., if up to translations
and rotations the pair is as shown in Fig. 2. The edge shared by such a pair
is referred to as a good edge. We consider the good pairs as open com-
plexes. This means that a good pair is composed of an open edge together
with the two adjacent open rhombi. Two good pairs are connected if their
intersection is an open rhombus.

v We define the type of a rhombus r, {(r), to be j if r # Rj , with
j # [0, 1, 2].

Let a tiling of the plane P be defined as a complete covering of P with
non-overlapping rhombi in R. For each pair of distinct i, j # [0, 1, 2] the
set of edges E"Eij drawn in the plane P yield a tiling of P with the rhombi
in R[012]"[ij ] . Minimal area interfaces and ground state interfaces have
simple geometric descriptions in terms of tilings (see Section 2.3).

The mixed boundary condition b.c.2 translates into a boundary condi-
tion for the R-configuration in P4 . It is given by a tiling of P"P4 with
rhombi of a single type, say R0 . We call this the standard b.c. for the rhom-
bus model.

2.3. The Minimal Area Interfaces

An interface I� is of minimal area if and only if its projection P(I� ) is
a tiling of P. Equivalently each such tiling is in one-to-one correspondence

Fig. 2. A pair of rhombi in good position. The edge shared by the two rhombi is referred to
as a good edge.
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with a dimer covering of the hexagonal lattice dual to the triangular lat-
tice V, i.e., of the lattice with set of sites given by the centers of the triangles
in T. It is less obvious, although also a well-known fact in enumerative
combinatorics, (28, 45) that all tilings of P with rhombi in R correspond to
a unique minimal area interface. This is shown in the following proposition.
The proof is constructive, i.e., it provides an algorithm for obtaining the
interface from the tiling and vice versa.

Proposition 3. The tilings of the plane P with rhombi in R under
standard b.c. are in one-to-one correspondence with the minimal area inter-
faces in the volume 4 under the mixed boundary condition b.c.2 (2.21).

Proof. As noted above it is obvious that each minimal area interface
under the boundary condition b.c.2 (2.21) projects onto a tiling of P4 with
rhombi in R. Hence, we only need to show that to each tiling there
corresponds exactly one interface that has that tiling as its projection. The
interface will automatically be minimal. This amounts to associating a
unique face of Z3 to each rhombus in the tiling such that the resulting set
of faces form a connected set which is pinned at the boundary of 4 along
the curve defined by (2.42). The projection of the set of faces constituting
an interface I� yields a set of rhombi in R that covers P4 . For each face f
we can number its vertices a1 , a2 , a3 , a4 in such a way that there is a
unique integer n( f ) for which

a1 # Pn( f )&1 , a2 # Pn( f ) , a3 # Pn( f )+1 , a4 # Pn( f )

It is easy to see that if P( f )=r # Ri , i=0, 1, 2, then i=n( f ) mod 3, and
that P( f ) and n( f ) uniquely determine f.

For any tiling with standard boundary conditions we will construct a
unique height function h: V � Z with the property that for each rhombus
r in the tiling the heights of its vertices, when ordered appropriately, and
such that [vi , vi+1] are edges of r, are given by

h(v1)=n&1, h(v2)=n, h(v3)=n+1, h(v4)=n

for some integer n satisfying i=n mod 3 iff r # Ri . It follows that h satisfies
|h(v)&h(w)|=1 for each edge [v, w] of a rhombus in the tiling. A minimal
area interface in 4 under the b.c.2 (2.21) is an interface whose projection
on the plane P4 is a tiling. It consists of all faces [ f ] in 4 for which:

1. P( f ) is a rhombus in the tiling, and

2. the vertices vi of P( f ) satisfy [h(vi ) | 1�i�4]=[n( f )&1, n( f ),
n( f )+1].
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It remains to construct the height function h and to verify that it is the
unique function with the stated properties. Let us denote by e� 1 ,..., e� 6 the
vectors of minimal length (=- 2�3), emanating from a single point of the
triangular lattice (spanned by the edges in E) such that the tips of these
vectors are the vertices of a hexagon. See Fig. 3. For any two vertices v,
w # V for which [v, w] is an edge in a tiling of P, w� &v� is one of e� i . Let
us denote by %(e� i , e� j ) the angle between e� i to e� j , which is a multiple of ?�3.
We claim that for each tiling there is a unique height function h satisfying

h(w)&h(v)={+1 if %(e� 1 , w� &v� ) is an even multiple of ?�3
&1 if %(e� 1 , w� &v� ) is an odd multiple of ?�3

for each edge [v, w] of a rhombus in the tiling. The height function h must
then be obtained by summing up the above differences along edges, starting
from a convenient reference value on the boundary of P4 . Consistency of
this definition follows from the elementary observations that

1. any two paths connecting the same pair of vertices and consisting
of edges in the tiling, together enclose a bounded subset of the plane tiled
with rhombi, and

2. for any rhombus the differences h(w)&h(v) along the four edges of
a rhombi sum up to zero because the rhombus has two angles of ?�3 and
two of 2?�3.

Then the uniqueness of h is also obvious.
Note that the height function h has been defined such that the height

of any vertex in the tiling is equal to the sum of the coordinates of the
point in the interface of which it is the projection. K

Proposition 4. The number of minimal interfaces N4 grows
exponentially with the area of the interface and satisfies the bounds:

2|I4 |�3�N4�22 |I4 |

where |I4 | is the area of the minimal area interfaces in the volume 4.

Fig. 3. The labeling of the sic unit vectors emanating from a site of the triangular lattice.
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Proof. Consider the interface defined by the R0 tiling, and pick one
of the three hexagonal sublattices of the vertices. Note that, independently
of each other, each hexagon can be tiled in two ways with three rhombi.
This proves the lower bound.

The upper bound is obtained by considering the hexagonal lattice dual
to the triangular lattice. Since every tiling is in one-to-one correspondence
with a dimer covering of this hexagonal lattice, it is also in one-to-one
correspondence with a path covering of the hexagonal lattice, restricted by
the condition that at each site the incidence of the path is two. The upper
bound is just the straightforward bound on the number of paths given by

2l where l is the length of the path

As the path is covering, the length of the path equals the number of bonds
in the hexagonal lattice which equals twice the number of rhombi needed
to tile the region, i.e., twice the area. K

Note that the exact rate of exponential growth of the degeneracy
depends on the shape of the finite volumes.(41)

From Proposition 4 it follows that in the limit 4ZZ3 there are
infinitely many minimal area interfaces.

3. THE RELEVANT PARTITION FUNCTIONS

We shall define the partition functions of the FK model in terms of the
second- and fourth order decompositions of the relative Hamiltonian.
These are defined through (2.23)�(2.24) and (2.33)�(2.35) respectively.
Such definitions are justified because the quantity relevant for the study of
an interface is not a solitary partition function but rather the quotient of
two partition functions, namely, a partition function corresponding to
mixed b.c. and one corresponding to homogeneous b.c. (see (2.22)). The
use of relative Hamiltonians in the definition of the partition functions
corresponds to the simultaneous subtraction of the energy of a homoge-
neous phase from the Hamiltonians appearing in the numerator and
denominator of the quotient and hence keeps the quotient unchanged.

Let 5 +
4 and 5 &

4 be the partition functions in 4/Z3 w.r.t. the homo-
geneous boundary conditions defined by (2.19). The spin-flip symmetry of
the effective Hamiltonian Heff

4 (U ) (2.13), for the choice h=0, implies that

5+
4 =5 &

4 :=5 hom
4 (3.1)

Let 5 100
4 and 5 111

4 be the corresponding partition functions under the mixed
boundary conditions b.c.1 (2.20) and b.c.2 (2.21) respectively.
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A mixed b.c. (b.c.1 (2.20) or b.c.2 (2.21)) leads to the appearance of an
interface I which divides the volume 4 into two subvolumes 4a

I and 4b
I

which are, respectively, the regions above and below I. The configuration
in these subvolumes are defined by finite sets of compatible contours 1 a :=
[#a

1 ,..., #a
p] and 1 b=[#b

1 ,..., #b
q] respectively. We define 1 :=1 a _ 1 b and

denote a configuration on the lattice by (I _ 1 ). Let I and I� denote the
families of interfaces resulting from b.c.1 and b.c.2 respectively. Let I and
I� denote their typical elements.

In terms of the second order decomposition (2.26) of the relative
Hamiltonian H4 , the partition function for homogeneous b.c. is given by

5hom
4 = :

1=[#1 ,..., #n]/4

`
n

i=1

e&;J1(U ) |#i | `

B & 1{<
|B|>2

e&;8B(1 ) (3.2)

where J1(U )& (1�2U )+h.o.. The partition function relevant for the mixed
boundary condition b.c.1 (2.20) is also obtained by using Eqs. (2.26)�
(2.29). It is given by

5 100
4 = :

I # I

:
1 :=1 a _ 1 b

e&;E1(I _ 1 ) (3.3)

where E1(I _ 1 ) is the energy of the configuration (I _ 1 ). It is the value
that the relative Hamiltonian H4 takes on the configuration (I _ 1 ):

E1(I _ 1 )= :
# a # 1 a

J1(U ) |#a|+ :
# b # 1 b

J1(U ) |#b|+J1(U ) |I |

+ :

B & (I _ 1 ){<
B: |B|�3

8B(I _ 1 ) (3.4)

The first three terms on the r.h.s. of (3.4) are the energies of the contours
in the configuration (I _ 1 ) as defined through (2.25). The third term is the
energy of interaction among these contours and arises from the long-range
tail potential R �3

4 (2.29) of the relative Hamiltonian H4 .
Let (I _ <) denote a configuration which consists only of the interface

I and no other contours. The energy of such a configuration can be inter-
preted as the ``bare'' energy of the interface, i.e., the energy of the interface
in the absence of any other contour. Let us denote this energy by E bare

1 (I ).
It is given by

Ebare
1 (I) :=J1(U ) |I |+ :

B & I{<
B: |B|�3

8B(I _ <) (3.5)
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From (2.28) and (2.32) it follows that for sufficiently large U, the energy
Ebare

1 (I ) satisfies the bound

|E bare
1 (I )|�const.

1
U

|I | (3.6)

It is convenient to isolate the ``bare'' energy of the interface from the
remaining terms in the expression (3.4) for E1(I _ 1 ). From (3.4) and (3.5)
it follows that

E1(I _ 1 )= :
# # 1

E(#)+E bare
1 (I )+E� 1(I _ 1 ) (3.7)

with

E� 1(I _ 1 ) = :

B & (I _ 1 ){<
B: |B|�3

8B(I _ 1 )& :

B & I{<
B: |B|�3

8B(I _ <)

= :

B & (I _ 1 ){<
B: |B|�3

[8B(I _ 1 )&/(B & I{<) 8B(I _ <)]

:= :

B & (I _ 1 ){<
B: |B|�3

8$B(I _ 1 ) (3.8)

where /( } ) denotes the characteristic function. Note that

8$B(I _ <)=0 if B & 1=< (3.9)

Hence, the functions 8$B for which B intersects only the interface, do not
contribute to the energy E� 1(I _ 1 ). The contributions of such bonds is
included in the ``bare'' energy E bare

1 (I ) of the interface.
A non-zero 8$B(I _ <) arises only from those bonds B which intersect

at least one contour in 1. This observation allows us to write E� 1(I _ 1 ) as
follows.

E� 1(I _ 1 )= :

B & 1{<
B: |B|�3

8$B(I _ 1 ) (3.10)
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Further, it follows from (2.32) that 8$B(I _ 1 ) satisfies the bound

|8$B(I _ 1 )|�|8B(I _ 1 )|+|8B(I _ <)|<2c2 \c1

U +
g(B)

(3.11)

for |B|�3. For bonds B which do not intersect the interface I,

8$B(I _ 1 )=8B(I _ 1 ) (3.12)

The partition function for the boundary condition b.c.1, defined by
(3.3) is hence given by

5 100
4 = :

I # I

e&;E 1
bare(I )_ :

1a=[#a
1 ,..., #a

p ]/4I
a

:
1 b=[#b

1 ,..., #b
q ]/4I

b
e&;E� 1(I _ 1 )

_ `
p

j=1

e&;J1(U ) |#j
a |_ `

q

k=1

e&;J1(U ) |#b
k | (3.13)

with E bare
1 (I) and E� 1(I _ 1 ) being defined through (3.5) and (3.10) respec-

tively. The partition function for the boundary condition b.c.2 (2.21) can be
similarly written as

5 111
4 = :

I� # I�

:
1 :=1 a _ 1 b

e&;E2(I� _ 1 ) (3.14)

where E2(I� _ 1 ) is the energy of the configuration (I� _ 1 ). In order to
determine whether the 111 interface is rigid, it is necessary to use the fourth
order decomposition [Eqs. (2.33)�(2.35)] of the relative Hamiltonian H4 ,
for computing the contribution of the interface I� to the energy E2(I� _ 1 ).
However, it is sufficient to consider the second order decomposition
[Eqs. (2.26)�(2.29)] for evaluating the corresponding contribution of the
contours in 1. We first introduce some notations which are useful in
evaluating E2(I� _ 1 ).

v Let PI� /P(4) denote the set of plaquettes in Z3 which are inter-
sected by the faces of I� . Let p denote a typical element in this set.

v Let B2
I� /Z3 denote the set consisting of pairs of next nearest

neighbour sites,

[[x, z] # Z3 | |x&z|=2] (3.15)

such that the line joining each pair is intersected by a face in I� .
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From (2.33)�(2.35), it follows that the energy E2(I� _ 1 ) is given by

E2(I� _ 1 )=J2(U ) |I� |+\ 1
8U 3+h.o.+ :

[x, z] # BI�
2

h[x, z](I� )

+\ 1
16U 3+h.o.+ :

p=[x, y, z, t] # PI�

hp(I� )

+ :

B & I� {<
B: |B|>3

8� B(I� _ 1 )+ :
#a # 1a

J1(U ) |#a|

+ :
# b # 1b

J1(U ) |#b|+ :

B & I� =<

B: |B|>2
B & 1{<

8B(I� _ 1 ) (3.16)

where

hp :=5(sxsyszst&1)+3(sxsz+syst&2) (3.17)

for each p=[x, y, z, t] # PI� ,

h[x, z] :=sxsz&1 (3.18)

for each [x, z] # B2
I� , and

J2(U )&
1

2U
&

11
8U 3+h.o. (3.19)

Let (I� _ <) denote a configuration which has the interface I� as its only
contour. We denote the corresponding ``bare'' energy of the interface by
Ebare

2 (I� ). It is defined as follows.

E bare
2 (I� ) :=J2(U ) |I� |+\ 1

8U 3+h.o.+ :
[x, z] # BI�

2
h[x, z](I� )

+\ 1
16U 3+h.o.+ :

p=[x, y, z, t] # PI�

hp(I� )

+ :

B & I� {<
B: |B|>3

8� B(I� _ <) (3.20)
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The partition function for the boundary condition b.c.2 can be expressed as
follows:

5 111
4 = :

I� # I�

e&;E2
bare(I� )_ :

1a=[#a
1 ,..., #a

p]/4I�
a

:
1 b=[#b

1 ,..., #b
q]/4I�

b
e&;E� 2(I� _ 1 )

_ `
p

j=1

e&;J1(U ) |#j
a |_ `

q

k=1

e&;J1(U ) |#b
k | (3.21)

where

E� 2(I� _ 1 ) := :

B & I� =<

B: |B|�3
B & 1{<

8B(I� _ 1 )+ :

B & I� {<
B: |B|>3

8� B(I� _ 1 )

& :

B & I� {<
B: |B| >3

8� B(I� _ <)

= :

B & I� =<

B: |B|�3
B & 1{<

8B(I� _ 1 )+ :

B & 1{<
B: |B|>3

(8� B(I� _ 1 )&8� B(I� _ <))

= :

B & I� =<

B: |B|�3
B & 1{<

8B(I� _ 1 )+ :

B & 1{<
B: |B|>3

8� $B(I� _ 1 ) (3.22)

where we have defined the quantity

8� $B(I� _ 1 ) :=8� B(I� _ 1 )&8� B(I� _ <) (3.23)

It satisfies the bound

|8� $B(I� _ 1 )|�2c2 \c1

U+
m(B)

(3.24)

where m(B) is defined through (2.37).
We prove in Sections 4 and 5 that the 100 and 111 interfaces are rigid

at low temperatures. The term dependent on the area of the interface, in
the expression (3.5) for the ``bare'' energy E bare

1 (I ) of the interface, is
responsible for the rigidity of the 100 interface. However, for the 111 inter-
face, the corresponding area-dependent term in the expression for the
``bare'' energy E bare

2 (I ) of the interface is not sufficient for stabilizing it
against thermal fluctuations. The rigidity at low temperatures results
instead from the geometry-dependent contribution of the plaquette poten-
tial hp(I� _ <) to the energy of the interface (i.e., the third term on the RHS
of (3.20)).
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The proofs of these results involve an analysis of the convergence
properties of the partition functions 5hom

4 , 5 100
4 and 5 111

4 in the limit
4ZZ3. A direct application of the method of cluster expansion requires
the contours to be non-interacting. This means that the energy of a con-
figuration is given by a sum of terms, each depending on only one contour
in the corresponding compatible family. This is not true for the FK model,
because the long range interactions in its effective Hamiltonian induce
interactions among the contours. We overcome this technical difficulty by
rewriting the partition functions in terms of configurations of non-interact-
ing but more complicated contours called decorated contours. In the next
section we define the decorated contours and derive expressions for the
partition functions in terms of them.

3.1. Decorated Contours

Let us first explain how we express the partition function of a system
under homogeneous boundary conditions (2.19) in terms of decorated con-
tours. The partition function for homogeneous b.c. is given by (3.2), which
we repeat here for convenience.

5hom
4 = :

1=[#1 ,..., #n]/4

`
n

i=1

e&;J1(U ) |#i | `

B & 1{<
|B|>2

e&;8B(1 ) (3.25)

By convention we treat empty products as unity. The idea is to
analyze the effect of the dominant part H (2)

04(U ) of the relative Hamiltonian
(2.23) by a low temperature expansion in terms of its contours #, while
treating the contribution of the long range tail, R �3

4 , by a high temperature
expansion.(12, 37) Hence, we write

5 hom
4 = :

1/4

`
# # 1

e&;J1(U ) |#i | `

|B|�3
B & 1{<

[(e&;8B&1)+1]

= :
1/4

`
# # 1

e&;J1(U ) |#i |

__1+ :
n�1

:

|Bi |>2; (i=1 } } } n)

B1 ,..., Bn
Bi & 1{<

`
n

i=1

(e&;8Bi&1)& (3.26)

To each term on the RHS of (3.26) we can associate a finite set of com-
patible contours and a set of bonds, each bond intersecting the support of
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at least one contour in the set. More precisely, a decorated contour is
defined by the pair

D=(1D , BD) (3.27)

where 1D/1 is a finite set of compatible contours and BD :=[B1 ,...Bn] is
a finite set of bonds such that for each Bi , 1�i�n, there is a # # 1D with
Bi & #{< and

supp D :=\ .
# # 1D

#+_ \ .
B # BD

B+ (3.28)

is a connected set. In (3.28) supp D denotes the support of a decorated
contour D. In the sequel we shall use the symbol D for both a decorated
contour and its support. Moreover,

|D| := :
# # D

|#|+ :
B # D

g(B) (3.29)

Decorated contours have the following properties:

v The interiors of any two distinct closed Ising contours, which belong
to a decorated contour D, do not intersect.

v Each bond B in a decorated contour intersects at least one contour
in D.

v Any two contours in a decorated contour D are connected through
bonds and other contours in D, i.e., for each pair of Ising contours #, #$ in
D, there are contours #1 ,..., #k in D such that #t#1 , #1t#2 ,..., #kt#$, with
the understanding that two contours #1 and #2 are connected, denoted by
#1t#2 , if one of the following holds:

�� there is a bond B in D such that B intersects both #1 and #2

�� there are two bonds B1 and B2 in D such that B1 & B2{<,
B1 intersects #1 and B2 intersects #2 .

To each decorated contour D=(1D , BD) we can associate a weight
W(D) as follows:

W(D) := `
# # D

e&;J1(U ) |#i | `

|B|�3
B # D

(e&;8B&1) (3.30)
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Let D denote a finite family of compatible decorated contours, i.e., a finite
set of mutually non-intersecting contours. Then the partition function can
be expressed as follows.

5 hom
4 = :

D/4{<

`
D # D

W(D) (3.31)

where |W(D)|�W0(D) for all D # D, with

W0(D) := `
# # 1D

e&;c0U&1 |#| `
B # BD

_exp \;c2 \c1

U+
g(B)

+&1& (3.32)

The above bound follows from the Peierls bound (2.30) and the exponen-
tial decay (2.32). In (3.31) the partition function for the lattice model under
homogeneous boundary conditions has been expressed in terms of a gas of
non-interacting, pairwise disjoint, decorated contours. The methods of
cluster expansion can now be applied to analyze its convergence properties.

The partition functions corresponding to mixed boundary conditions
(2.20)�(2.21) can be expressed in terms of decorated contours in a similar
manner. However, under these boundary conditions there is a contour��
the interface��which is pinned to the boundary of the volume 4. In our
definition of decorated contours the interface is treated differently from the
remaining Ising contours in the volume 4. It is not considered to be a part
of a decorated contour. Consequently, in the expressions for the partition
functions under mixed boundary conditions, there is an additional sum
over all possible interfaces. As described in Section 2, an interface I divides
the volume 4 into two subvolumes 4a

I and 4b
I . For each interface, the set

of non-interacting decorated contours, corresponding to a mixed boundary
condition, can be decomposed into three subfamilies which consists, respec-
tively, of contours which intersect I, which are above I and which are
below I. Hence, for a given interface I, under the boundary condition b.c.1
(2.20), we define the following compatible families of decorated contours.

DI :=[[D l1
} } } Dlp

| Dli
& I{<, 1�i�p, li # Z]]

Da
I :=[[Dm1

} } } Dmq
| Dmi

& 1 a{<, Dmi
& I=<, 1�i�q, mi # Z]]

Db
I :=[[Dn1

} } } Dnr
| Dni

& 1 b{<, Dni
& I=<, 1�i�r, n i # Z]]

(3.33)

where 1 a and 1 b are the subfamilies of compatible (Ising) contours which
lie entirely in the subvolumes 4a

I and 4b
I respectively. For a given interface I� ,
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under the boundary condition b.c.2 (2.21), the corresponding families of
compatible decorated contours are denoted by DI� , Da

I� and Db
I� .

From (3.13), (3.8) and (3.12) it follows that

5 100
4 = :

I # I

e&;E1
bare(I ) \ :

Di & 4{<

`
D # DI

WI (D)+
_\ :

DI
a

& 4{<

`
D # DI

a
W(D)+\ :

DI
b

& 4{<

`
D # DI

b
W(D)+ (3.34)

where W(D) is defined through (3.30) and satisfies the bound |W(D)|�
W0(D), with W0(D) being defined through (3.32).

For D # DI

WI (D) := `
# # D

e&;J1(U ) |#i | `

|B|�3
B # D

(e&;8$B&1) (3.35)

From the Peierls bound (2.30) and the estimate (3.11) it follows that
|WI (D)|�W 0

I where

W 0
I(D) := `

# # D

e&;c0U&1 |#| `

|B|�3
B # D _exp \2;c2 \c1

U+
g(B)

+&1& (3.36)

Similarly the partition function 5 111
4 , defined through (3.21)�(3.22), can be

written as

5 111
4 = :

I� # I�

e&;E2
bare(I� ) \ :

DI� & 4{<

`
D # DI�

WI� (D)+
_\ :

DI�
a

& 4{<

`
D # DI�

a
W(D)+\ :

DI�
b

& 4{<

`
D # DI�

b
W(D)+ (3.37)

where for D # DI�

WI� (D) := `
# # D

e&;J1(U ) |#| `

|B|�3
B # D

(e&;8� $B&1) (3.38)

The bounds (2.30) and (3.24) imply that |WI� (D)|�W 0
I� where

W 0
I� (D) := `

# # D

e&;c0U&1 |#| `

|B|>3
B # D _exp \2;c2 \c1

U+
m(B)

+&1& (3.39)

where m(B) is defined through (2.37).
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In order to proceed we need to analyze the convergence properties of
series of the form

S4 := :
D & 4{<

`
D # D

W(D) (3.40)

where D is a finite set of compatible decorated contours with weights given
by

W(D) := `
# # D

e&;E(#) `
B # D

(e&;GB&1) (3.41)

where the function GB is given by 8B (2.24) for the homogeneous bound-
ary conditions (2.19) and by the functions 8$B (3.8) and 8� $B (3.23) for the
mixed boundary conditions (2.20) and (2.21) respectively. The bounds
satisfied by these functions are respectively given by (2.32), (3.11) and
(3.24). Since the series in (3.40) is expressed as a sum over compatible
families of non-interacting decorated contours, its convergence properties
can be studied by the method of cluster expansions. The convergence of
the above series (for GB=8B and GB=8$B) follows from Lemma 5 given
below.

Lemma 5. Consider the series

S4 := :
D & 4{<

`
D # D

W(D) (3.42)

where

W(D) := `
# # D

e&;E(#) `
B # D

(e&;GB&1) (3.43)

and assume that there exists positive constants C1 and C2 such that

E(#)�C1* |#| (3.44)

and

|GB |�C2 * g(B) (3.45)
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where g(B) is defined through (2.10) and *<1. Then there exists constants
b0 , *0>0 such that for ;*>b0 and *<*0 , the series S4 has a convergent
cluster expansion, i.e.,

log S4= :
N�1

1
N !

:
D1 & 4{<

} } } :
DN & 4{<

9 T([D1 ,..., DN]) (3.46)

(the cluster expansion), where 9T is a function on families of decorated
contours with the property that

9T([D1 ,..., DN])=0 if [D1 ,..., DN] is not a cluster (3.47)

i.e., if D1 _ } } } _ DN is not a connected set. It satisfies the bound

:
[D1 ,..., DN ] % 0

|9T(D1 ,..., DN)|
|D1 _ } } } _ DN |

�sN (3.48)

where sN is a constant of the order of

sup `
N

i=1

|W(Di )|

the supremum being taken over all sets of N decorated contours (not
necessarily pairwise disjoint).

The above lemma is proved in Appendix B. The proof of the con-
vergence of the series S4 (3.40) for GB=8� B is analogous to the proof of
the above lemma and is hence not included. The only difference is the
replacement of the bound (3.45) by the bound

|GB |�C2 *m(B) (3.49)

where m(B) :=max(5, g(B)).
Let P denote a cluster of decorated contours. It is a connected set of

intersecting decorated contours. A single decorated contour can occur
several times in a cluster. Further we define

|P| := :
D # P

|D|= :
D # P \ :

# # D

|#|+ :
B # D

g(B)+ (3.50)
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Let 9T(P), 9 T
I (P) and 9 T

I� (P) denote truncated functions, defined on the
cluster P, which satisfy the following bounds.

:
P % 0

|9T(P)|
|P|

�sup ` |W(D)| (3.51)

:
P % 0

|9 T
I (P)|
|P|

�sup ` |WI (D)| (3.52)

and

:
P % 0

|9 T
I� |(P)
|P|

�sup ` |WI� (D)| (3.53)

If the cluster P consists of N decorated contours then the product is over
a set of N decorated contours and the supremum in the above estimates is
taken over all such of N decorated contours.

To determine whether the 100 and 111 interfaces are rigid, we need to
analyze the following quotients.

Z100
4 =

5 100
4

5 +
4

and Z111
4 =

5 111
4

5 +
4

(3.54)

Using the results of cluster expansions (see, e.g., ref. 34) we can express
these quantities in terms of the truncated functions defined above.

Proposition 6. There exist three constants U0 , B1 , and B2 inde-
pendent of the volume 4, such that for all U>U0 and ;�U>B1 , the
quotient Z100

4 can be written as follows:

Z100
4 = :

I # I

e&;E1
bare(I )_exp { :

P & 4{<

P:
P & I{<

9 T
I (P)& :

P & 4{<

P:
P & I� {<

9T(P)= (3.55)

For all U>U0 and ;�U 3>B2 , the quotient Z111
4 can be written as follows:

Z111
4 = :

I� # I�

e&;E2
bare(I� )_exp { :

P & 4{<

P:
P & I� {<

9 T
I� (P)& :

P & 4{<

P:
P & I� {<

9T(P)= (3.56)

Proof. The proof is standard. We expand the partition functions
appearing in the numerator and in the denominator of Z100

4 and of Z111
4 by
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the cluster expansion performed in the Appendix B. The truncated func-
tions which are left are precisely those defined on the clusters which inter-
sect the interface. K

Alternatively Z111
4 can be written as

Z111
4 = :

I� # I�

e&;E2
dec(I� ) (3.57)

where E dec
2 (I� ) denotes the energy of the interface in the presence of the

decorated contours and is defined as follows.

E dec
2 (I� ) :=E bare

2 (I� )&
1
; _ :

P & 4{<

P:
P & I� {<

9 T
I� (P)& :

P & 4{<

P:
P & I� {<

9 T(P)& (3.58)

We shall refer to E dec
2 (I� ) as the energy of the decorated interface.

4. RIGIDITY OF THE 100 INTERFACE

The study of the 100 interface requires the second order decomposition
of the effective Hamiltonian of the FK model, in which the second order
truncated Hamiltonian H (2)

0 (U ) is the Ising Hamiltonian, with coupling
constant J1(U ). We point out that the Hamiltonian H (2)

0 (U ) is generated
by the second order quantum fluctuations, this means that the rigidity of
the 100 interface of the FK model is of quantum nature. The proof of the
rigidity of the 100 interface of the three-dimensional FK model is a
generalization of Dobrushin's proof of the rigidity of this interface in the
three-dimensional Ising model at sufficiently low temperatures.(15)

Proof of Theorem 1. Let Prob4(I ) denote the probability of
occurrence of an interface I in the FK model, defined on a finite cubic
lattice 4, under the boundary condition b.c.1 (2.20). It is defined as follows:

Prob4(I )=
1

Z100
4

exp[&;E bare
1 (I )]

_exp { :

P & 4{<

P:
P & I{<

9 T
I (P)& :

P & 4{<

P:
P & I{<

9T(P)= (4.1)

To determine whether the 100 interface is rigid, we need to analyze the
properties of this quantity in the thermodynamic limit.
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We notice that the above expression (4.1) is similar to the corresponding
probability of a 100 interface in the Ising model. This is because the leading
term in the ``bare'' energy, E bare

1 (I ) (3.5), of an interface I is exactly equal
to the energy of an interface I for an Ising model with coupling constant
J1(U ). We point out that this similarity results from the fact that we
have expressed the probability Prob4(I) directly in terms of an actual
interface I, separating the two coexisting phases, instead of expressing it in
terms of a decorated interface. (The latter is given by a connected set
(I, BI , 1I), where BI is a finite set of bonds and 1I is a finite set of Ising
contours; [see ref. 34 and references therein].) This leads to a considerable
simplification in the calculations since an actual interface between two
coexisting phases, under the boundary condition b.c. 1, reduces to a flat
interface orthogonal to n=(0, 0, 1) at zero temperature. This property is,
however, not satisfied by a decorated interface.

Let us describe the minor differences which arise in the description of
the 100 interface of the FK model with respect to that of the Ising model.

v The first difference lies in the contributions of the truncated func-
tions. For the FK model these functions are defined on sets of decorated
contours, whereas for the Ising model they are defined on sets of Ising con-
tours. However, these exists a positive constant U0 for such that for all
U>U0 , the contribution of the truncated functions is exponentially small
for the FK model, as in the case for the Ising model. Difference arises from
the fact that the ``bare'' energy, E bare

1 (I ) (3.5), of the interface consists of
terms in addition to the leading Ising-like term J1(U ) |I |. These terms are,
however, small for U>U0 , where U0 is a positive constant. Hence they are
treated in the same way as the truncated functions.

The proof of the rigidity of the 100 interface of the FK model is similar
to Dobrushin's proof of the rigidity of the 100 interface of the three-dimen-
sional Ising model.(15) The proof of the rigidity can be converted into the
study of a two-dimensional contour model, which resembles an Ising model
with long range interactions, in which the ground states are the projections
of the ceilings on the 100 plane and the contours are the corresponding
projections of the walls. The rigidity of the 100 interface at low tem-
peratures follows from a Peierls argument on the contours (walls).(15)

Taking into account the small modifications described above, we deduce
that there exists positive constants U0 and D0 such that, for all U>U0 and
;�U>D0 , the assertions of Theorem 1 (see Section 2) are true. K

We would like to remark that Theorem 1, stated for the FK model, is
in general valid for a wide class of lattice Hamiltonians, namely, those
which can be expressed as a sum of two terms: a dominant nearest
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neighbour Ising Hamiltonian, and a remainder consisting of long-range
many-body interactions satisfying exponential decay (2.12).

5. RIGIDITY OF THE 111 INTERFACE

The case of the 111 interface can be treated by using the ideas of
Dobrushin but the situation is more involved. The main difference between
the 111 interface and the 100 interface is that the second order decomposi-
tion of the effective Hamiltonian (2.27) does not lead to the existence of a
unique ground state interface in the 111 direction. The energy of a 111
interface w.r.t. the leading part, H (2)

0 (U ), of the relative Hamiltonian, is
proportional to the area of the 111 interface. Hence, the ground state inter-
face has minimal area. However, there are infinitely many such interfaces
in the infinite volume limit (Proposition 4 of Section 2.3). Hence, the
ground state of the 111 interface has an infinite degeneracy. Thus, to prove
the rigidity of the 111 interface we require a more refined decomposition of
the effective Hamiltonian, namely, the fourth-order decomposition. In this
section we prove that the degeneracy of the 111 ground state interface is
lifted by the fourth-order truncated effective Hamiltonian, H (4)

0 (U ), which
takes into account the fourth-order quantum fluctuations. The study of the
properties of the 111 interface can be reduced to the analysis of a model
defined on a two-dimensional triangular lattice which is obtained by pro-
jecting the interface onto a fixed plane (see Sections 2.2 and 5.1 for details).
We refer to this model as the rhombus model. The rigidity of the 111 inter-
face at sufficiently low temperatures can be deduced from the low tem-
perature behaviour of the rhombus model.

We first define the main quantity required in our proof of the rigidity
of the 111 interface: the probability of occurrence of an interface I� , in the
volume 4, under the boundary condition b.c.2 (2.21):

Prob4(I� )=
1

Z111
4

exp[&;E bare
2 (I� )]

_exp { :

P & 4{<

P:
P & I� {<

9 T
I� (P)& :

P & 4{<

P:
P & I� {<

9 T(P)= (5.1)

5.1. Description of the Rhombus Configurations

As we have seen, the projection of each face of the interface I� , onto the
plane P yields a rhombus of one of the three types, i.e., belonging to R0 ,
R1 or R2 . An interface I� is projected onto a covering of P with rhombi,
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File: 822J 250937 . By:XX . Date:05:04:00 . Time:14:43 LOP8M. V8.B. Page 01:01
Codes: 1632 Signs: 923 . Length: 44 pic 2 pts, 186 mm

Fig. 4. A minimal area interface with its $-edges (given by the dark lines). The only purpose
of the shading is to guide the eye.

which we refer to as in R-configuration (see Section 2.2). In general, this
rhombus covering is not a tiling. Moreover, many interfaces are represented
by the same R configuration. Let C4 denote an R configuration on P4 .

The correspondence between the relative positions of the rhombi in an
R-configuration and the local geometry of the corresponding interface (as
determined by the spin configurations on the plaquettes of PI� , and the
bonds of B2

I� ) is given as follows:

local spin configuration on Z3 W rhombus configuration on P

+ +
+ &

W
two adjacent rhombi of the same type
i.e., a good pair of rhombi

(5.2)

two adjacent rhombi of different types;+ &
+ &

W the common edge is then called
a $-edge. See Fig. 4 (5.3)

four overlapping rhombi sharing an+ &
& +

W edge: the common edge is then called
an |-edge (5.4)
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two parallel rhombi sharing a vertex,

+ & + W
with one of them being necessarily
overlapping: the two rhombi are said to
be connected by a *-link (see below)

(5.5)

and the same correspondences for spin configurations obtained by a spin
flip transformation or by rotations of the ones above.

Definition of a *-link. Consider a pair of parallel faces of an interface,
which are a unit distance apart. Consider a line segment which connects
the centers of these faces and is perpendicular to them. The projection of
such a line segment on the plane P is referred to as a *-link. A single *-link
can be the projection of several such line segments. Hence, each *-link has
a multiplicity, m, which counts the number of line segments which project
onto it.

5.2. The Energy of a Rhombus Configuration

To order U &3, the bare energy E bare
2 (I� ) of an interface I� , defined by

(3.20), is a function of the local geometry of the interface, and hence is a
function of the R-configuration. The plaquette potential hp , (given by (3.17)),
as well as the next nearest neighbour interaction h[x, z] with |x&z|=2,
(given by (3.18)), play crucial roles in determining this energy. Their contri-
butions to the energy for different spin configurations are given as follows:

hp \+
+

+
&+= &16 (5.6)

hp \+
+

&
&+= &12 (5.7)

hp \+
&

&
++=0 (5.8)

h[x, z](+ & +)=0 (5.9)

h[x, z](+ & &)=h[x, z](& & +)=&2 (5.10)

The plaquette and next nearest neighbour configurations which correspond
to the lowest energy for these potentials are those given in (5.6) and (5.10)
respectively. Moreover, from (5.2) it follows that the plaquette configura-
tion with lowest energy corresponds to a good pair of rhombi. Hence,
a connected set of faces of the interface whose projection on the plane P4
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Fig. 5. The ``perfect staircase'' structure of the interface I� R0
.

consists entirely of good pairs of rhombi defines a local ground state con-
figuration of the interface with respect to the truncated Hamiltonian H (4)

0

(2.34). Since two rhombi that form a good pair are necessarily of the same
type, it follows that there are three such local ground state configurations
corresponding to rhombi in the families R0 , R1 and R2 respectively.

We conclude from the above that those minimal area interfaces whose
projections on the plane P are tilings with rhombi belonging to a single
family have minimum energy with respect to H (4)

0 (2.34) and are hence
referred to as ground state interfaces. Since we have chosen the standard
b.c. for the R-configuration to be given by a tiling of the plane P"P4 with
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rhombi in the family R0 [see Section 2.2], it follows that a ground state
interface projects onto a tiling of P4 with rhombi in the family R0 . We
hence denote a ground state interface as I� R0

. It is easy to see that I� R0
has

a perfect staircase structure (see Fig. 5). Thus, under the boundary condi-
tion b.c.2 (2.21), the geometry-dependent contribution of the plaquette
potential hp leads to the selection of a unique ground state interface (up to
translations) from the infinitely many minimal area interfaces.

For any interface I� the connected components of the set I� "I� R0
are

referred to as pyramids. They represent the local distortions of the interface
from a perfect staircase structure.

We would like to point out that the above mentioned phenomenon of
ground state selection is a consequence of the Fermi statistics of the elec-
trons in the model. The anticommutation relations for the electron creation
and annihilation operators play a crucial role in determining the exact
expressions for the potentials hp (3.17) and h[x, z] (3.18) which are respon-
sible for lifting the infinite degeneracy. If instead of fermions we consider
bosons, then the corresponding commutation rules for the creation and
annihilation operators yield the following expression for the plaquette
potential:

h� p=1&sxsy sz sw+5(sxsz+sysw&2) (5.11)

where w, x, y and z are four sites forming a plaquette. It is easy to see that

h� p \+
+

+
&+>h� p \+

+
&
&+ (5.12)

and hence, in the bosonic case, the perfect staircase configuration is not
favoured by the plaquette potential in fourth order of perturbation theory.

5.3. The Energy of a Ground State Interface

The energy of the ground state interface I� R0
is given by

E dec
2 (I� R0

) :=E bare
2 (I� R0

)&
1
; _ :

P & 4{<

P:
P & I� R0

{<

9 T
I� R0

(P)& :

P & 4{<

P:
P & I� R0

{<

9 T(P)& (5.13)

where,

E bare
2 (I� R0

)=\J2(U )&
1

4U 3+ |I� R0
|&\ 1

U 3+h.o.+ N1(I� R0
)

+ :
[B: |B|>3; B & I� R0

{<]

8� B(I� R0
_ <) (5.14)
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Here |I� R0
| is the total number of faces in the interface I� R0

, which is equal
to the number of rhombi in the corresponding tiling of P4 , and N1(I� R0

) is
the total number of shared edges of rhombi in the tiling. The above expres-
sion (5.14) follows from (3.20). It is obvious that E bare

2 (I� Ri
), is the same for

i=0, 1 and 2. Hence, we can define the relative energy of an interface I� as
follows.

=dec
2 (I� ) :=E dec

2 (I� )&E dec
2 (I� R0

) (5.15)

5.4. The Components of an R-Configuration

An R-configuration can be decomposed into bases��which are local
ground state configurations of H (4)

0 (2.34), and R-contours��which repre-
sent the excitations.

Bases: A base of a given R configuration is a maximally connected set
of good pairs of rhombi. As each base is the union of open sets, it is an
open set, and by definition distinct bases do not intersect. Denote by
[C1 ,..., Cp] the family of bases of a given R configuration. The type of a
base Ci is defined as follows: {(Ci )= j, if the rhombi it consists of belong
to Rj . Due to the mixed boundary conditions one of the bases is connected
to the boundary and hence becomes infinite in the thermodynamic limit.
Let C1 denote this base. Since the standard b.c. is chosen to be a tiling of
P"P4 with rhombi in R0 , we have {(C1)=0.

R-contours: The maximally connected components of the complements
of the bases, i.e., of P4 "� i= p

i=1 Ci , are called the R-contours. Isolated
vertices are not considered to be R-contours. Each R-contour is a closed
complex and is denoted by the symbol (.

An R-contour ( is defined by a pair

(=(supp (, 3() (5.16)

where

v supp ( denotes the geometric support of the R-contour and is a
connected subset of the plane P,

v 3( denotes the configuration on this support. It is defined in terms
of overlapping rhombi, $- and |- lines and *-links that span supp (.

For notational simplicity we shall often use the symbol ( to denote
both the R-contour and its geometric support supp (.
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An R-configuration, under standard boundary conditions, is given by
a compatible family of R-contours, C4 :=[(1 ,..., (n], i.e., a finite set of
non-intersecting, closed R-contours, along with a specification of the types
of the bases separating the R-contours. To avoid complicated notations,
the types of the bases will be specified only when required. Those R-con-
tours whose supports are not in the interiors of any other R-contours in C4

are referred to as the external contours of C4 .

5.5. The Structure of the R-Contours

Each R-contour ( has a detailed structure. It can be decomposed into
two families of subcontours, one of which can be empty.

v The overlapping R-subcontours [(ov
1 ,..., (ov

p ] are the maximally
connected sets of overlapping rhombi contained in (. Each overlapping
R-subcontour is a closed complex.

v The complement of the overlapping R-subcontours in (, i.e.,
("� i= p

i=1 (ov
i is considered as an open complex, whose elements

[(st
1 ,..., (st

q ] are maximally connected open complexes. They are called the
standard R-subcontours. We refer to an R-contour as a standard R-contour
if it has no overlapping components.

Hence, an R contour ( has the following decomposition:

( :=(( p, q)={ .
i= p

i=1

(ov
i =_ { .

k=q

k=1

(st
k = (5.17)

Let us describe the detailed structure of the different R-subcontours.
A standard R-subcontour (st

k is uniquely specified by a configuration 2st
k of

$-lines. We refer to such $-lines as standard $-lines. An overlapping R-sub-
contour (ov

i is characterized by four families of configurations.

v A configuration of overlapping triangles Tov
i . It is easy to see that

each overlapping triangle in the projection of an interface has an even
overlap number and each rhombus in (ov

i contains at least one overlapping
triangle. Let |Tov

i | denote the sum of the overlap number of all the over-
lapping triangles contained in (ov

i , i.e.,

|Tov
i | := :

t # T i
ov

o(t) (5.18)
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Let aov
i denote the number of extra faces of an interface (in comparison

with the number of faces of a minimal area interface) which project on to
the support supp (ov

i . It is given by

aov
i =

|Tov
i |

2
(5.19)

Since |Tov
i | is even, aov

i is an integer.

v A configuration 2ov
i of $ lines. The total length of the $ lines in (ov

i

is denoted by |2ov
i |.

v A configuration 0ov
i of | lines. The total length of the | lines in (ov

i

is denoted by |0ov
i |.

v A configuration 4ov
i of * links. The total length of the * links of (ov

i

is denoted by |4ov
i |.

The number of rhombi spanning supp (ov
i is bounded above by aov

i ,
since each rhombus in supp (ov

i is an overlapping one. Each of these
rhombi contribute at most three distinct sites to supp (ov

i since the latter
is a connected set. The number of sites in the R contour (( p, q) (defined
through (5.17)) hence satisfies the bound

|(|� :
p

i=1

[3 |aov
i |+(|2ov

i |+1)+(|4ov
i |+1)+(|0ov

i |+1)]

+ :
q

k=1

( |2st
k |+1) (5.20)

The relative energy of the interface I� can be expressed in terms of the
energy of the corresponding R configuration C4=[(1 ,..., (n]. It is given by

=dec
2 (I� ) # =dec

2 ([(1 ,..., (n])

:= :
i=n

i=1

F((i )+W([(1 ,..., (n]) (5.21)

where F((i ) is the energy of the R-contour (i computed with the fourth
order truncated relative Hamiltonian H (4)

04 defined in (2.34), and W([(1 ,...,
(n]) is the contribution to the energy of the R configuration arising from
the long-range tail R �5

4 defined in (2.35). The latter consists of higher order
corrections to the energy of each individual contour, as well as interaction
energies between the different R contours in the compatible family. From
(5.15), (3.20) and (3.58) it follows that
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:
n

i=1

F((i )=J2(U )( |I� |&|I� R0
| )+\ 1

8U 3+h.o.+
__ :

[x, z] # BI�
2

h[x, z](I� )& :
[s, z] # B2

I�
R0

h[x, z](I� R0
)&

+\ 1
16U 3+h.o.+

__ :
p=[x, y, z, t] # PI�

hp(I� )& :
p=[x, y, z, t] # PI� R0

hp(I� R0
)& (5.22)

and

W([(1 ,..., (n])={ :

B & I� {<
B: |B|>3

8� B(I� _ <)& :

B & I� R0
{<

B: |B|>3;

8� B(I� R0
_ <)=

&
1
; { :

P & 4{<

P:
P & I� {<

9 T
I� (P)& :

P & 4{<

P:
P & I� R0

{<

9 T
I� R0

(P)=

+
1
; { :

P & 4{<

P:
P & I� {<

9 T(P)& :

P & 4{<

P:
P & I� R0

{<

9T(P)= (5.23)

Lemma 7. Let ( ben an R-contour defined through (5.17) and let
C4 denote an R-configuration. The energies F(() and W(C4), defined
through (5.22) and (5.23) respectively, are given by the following expres-
sions:

F(()=J2(U ) :
i= p

i=1

aov
i +K2(U ) \ :

k=q

k=1

|2st
k |+ :

i= p

i=1

|2ov
i |+

+\ 1
U 3+h.o.+ :

i= p

i=1

|0ov
i |+\ 1

4U 3+h.o.+ :
i= p

i=1

|4ov
i | (5.24)

where

J2(U )=
1

2U
&

11
8U 3+h.o. (5.25)

K2(U )=
1

4U 3+h.o. (5.26)

504 Datta et al.



and

W(C4)= :

BP & C4{<
B: |B|>3

8B@ (C4)

&
1
; { :

PP & C4{<
P:

9 T
I� (P)& :

PP & C4{<
P:

9T(P)= (5.27)

where

8B@ (C4) :=8� B(I� _ <)&8� B(I� R0
_ <) (5.28)

and BP is the projection of the bond B on the plane P. The notation
BP & C4{< is used to denote the condition that BP intersects either of
the following in the R configuration: an overlapping triangle, a $-line, an
|-line, or a *-link. Similarly, PP denotes the projection of the cluster P of
decorated contours, on the plane P.

Proof. We use (5.6)�(5.10) and the definition of the different com-
ponents of an R-contour to obtain the expression for the energy F(() from
(5.22). It is a sum of the energies of the overlapping- and standard R-sub-
contours in (. The energy of an overlapping R-subcontour is given in
terms of the number of overlapping triangles, $-lines, |-lines, and *-links
which constitute it. The energy of a standard R-subcontour is proportional
to the number of $-lines in it.

The expression (5.27) follows from the definition (5.23), since the only
terms which survive in each of the three parenthesis on the RHS of (5.23)
are those in which the projections of the bonds B or the clusters P on the
plane P, intersect at least one R-contour in the compatible family C4 . This
concludes the proof.

In the definition (5.28) we have made use of the fact that while the
interface I� corresponds to the R-configuration C4 , containing the R-con-
tour (, the projection of the ground state interface I� R0

contains no R-con-
tours. K

More generally, the energy of an R-configuration C4 can be expressed
as follows:

=dec
2 (C4)= :

( # C4

=(( | C4) (5.29)
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where =(( | C4) denotes the total energy of an R-contour ( belonging to
the R-configuration C4 . It is defined as follows:

=(( | C4) :=F(()+W(( | C4) (5.30)

where F(() is given by (5.24) and W(( | C4) is given by

W(( | C4)= :

BP & ({<
B: |B|>3

8B@ (C4)

&
1
; { :

PP & ({<
P:

9 T
I� (P)& :

PP & ({<
P:

9T(P)= (5.31)

5.6. The Relevant Probabilities

The probability of occurrence of an interface I� in the volume 4 can be
identified with the probability of the corresponding compatible family of
R-contours C4#[(1 ,..., (n] in the rhombus model.

Prob4(I� )=Prob4([(1 ,..., (n])

=
e&;=2

dec([(1,..., (n])

�[(1,..., (n]/P4
e&;=

2
dec([(1,..., (2])

(5.32)

Further, let Prob4 ( denote the probability of occurrence of an R-contour
(. It is given by

Prob4 (=
�$ e&=2

dec(C4)

� e&=2
dec(C4)

(5.33)

where the sum in the numerator is over all R-configurations which contain
the given R-contour (, while the denominator has an unrestricted sum
over all R-configurations.

To prove the rigidity of the 111 interface, we need to find an upper
bound to the probability Prob4 ( defined in (5.33). This is given in the
following proposition.

Proposition 8. There exists positive constants U0 and b0 , such
that for all U>U0 and ;�U>b0 , the probability, Prob4((( p, q)), of
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occurrence of an R-contour (( p, q) (defined through (5.17)) satisfies the
following bound:

Prob4((( p, q))� `
i= p

i=1

[e&;J3(U ) ai
ov

]_ `
k=q

k=1

[e&;K3(U ) |2k
st |] (5.34)

where

J3(U )=J2(U )&A1U &5&
2
;

e&6;A2U&1

(5.35)

K3(U )=K2(U )&A1U &5&
2
;

e&6;A2U&1

and A1 and A2 are positive constants depending on c1 , c2 and U0 . The con-
stants J2(U ) and K2(U ) are defined through (5.25) and (5.26) respectively.

The proof of this proposition requires two steps. The first is to
obtain a lower bound on the total energy, =(( | C4), of an R-contour (
which belongs to an R configuration C4 . This energy is defined through
(5.30).

The second step is a generalization of the Peierls argument analogous to
Dobrushin's treatment of the antiferromagnetic Ising model.(14) A unique
specification of an R configuration requires the specification of not only a
compatible family of R-contours, but also the type of the bases adjacent to
the inner and outer boundaries of each R-contour. In other words contours
in the R configuration are not only required to be pairwise disjoint, but
there is the additional requirement of matching of boundary conditions.
One way of analyzing such contour expansions would be to use the
Pirogov�Sinai theory extended to interacting contours.(12, 37) However,
instead of doing this we resort to a much simpler method. We use a recipe
for removing a contour from a compatible family which is a generalization
of the one introduced by Dobrushin in the study of the antiferromagnetic
Ising model. The idea is to map a configuration of R-contours [(1 ,..., (p]
to a new one [($2 ,..., ($p] with one contour less, where (r and ($r are either
the same, or related to each other by a simple geometric transformation.
The transformation preserves the energy of the R-contour, at least to order
U &3. By using this generalization of Dobrushin's construction we avoid
using the Pirogov�Sinai theory.

Step 1. A lower bound to the total energy of an R-con-
tour. The following lemma is necessary to determine a lower bound to
the total energy =(( | C4), [defined through (5.30)].
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Lemma 9. There exist positive constants U0 , b0 , such that for all
U>U0 and ;�U>b0 the following bound is satisfied:

|W(( | C4)|�W0(( | C4) (5.36)

where

W0(( | C4) :=|(| {a1U &5+
c
;

e&6;a2 U&1= (5.37)

with c, a1 and a2 being positive constants depending on c1 , c2 , U0 and b0 .

Proof. From the definition (5.31) of W(( | C4) it follows that

|W(( | C4)|� :

BP & ({<
B: |B|>3

|8B@ (C4)|

+
1
; { :

PP & ({<
P:

|9 T
I� (P)|+ :

PP & ({<
P:

|8T(P)|=

� :
x* # (

:

B % x
B: |B|>3

|8B@ (C4)|
|B|

+ :
x* # (

1
; { :

P % x
P:

|9 T
I� (P)|
|P|

+ :

P % x
P:

|9 T(P)|
|P| = (5.38)

where x* is the projection of the site x of the lattice on the plane P. From
the definition (5.28) of 8B@ and the bound (2.36) it follows that for all
U>cdc1 ,

:
x* # ( { :

B % x
B: |B|>3

|8B@ (C4)|
|B| =�a1 |(| U &5 (5.39)

where a1 is a positive constant depending on U0 , c1 and c2 . Further, using
the bounds (3.51) and (3.53), and the definitions (3.32) and (3.39), we
obtain the following bound:

1
;

:
x* # ( { :

P % x
P:

|9 T
I� (P)|
|P|

+ :

P % x
P:

|9T(P)|
|P| =�

c |(|
;

e&6;a2U&2
(5.40)
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where c and a2 denote positive constants depending on c1 , c2 , U0 and b0 .
The factor of six in the exponent arises from the fact that the smallest Ising
contour has six faces. K

The lower bound to =(( | C4) is given by the following corollary.

Corollary 10. There exist positive constants U0 and b0 , such that
for all U>U0 and ;�U>b0 , the total energy =(( | C4) (5.30), of an R-con-
tour ( (defined through (5.17)) which belongs to an R-configuration C4 ,
satisfies the following bound:

|=(( | C4)|�J3(U ) :
p

i=1

aov
i +K3(U ) :

q

k=1

|2st
k | (5.41)

where

J3(U )=J2(U )&6a1 U &5&
6c
;

e&6;a2U&1
(5.42)

K3(U )=K2(U )&2a1U &5&
2c
;

e&6;a2U&1
(5.43)

and c, a1 and a2 are the positive constants of Lemma 9. The constants
J2(U ) and K2(U ) are defined through (5.25) and (5.26) respectively.

Proof. From the definition (5.30) of =(( | C4) it follows that

|=(( | C4)|�F0(()&W0(( | C4)

where F0(() is a lower bound to F((), and W0(( | C4) is an upper bound
to W(( | C4). Obtaining F0(() from (5.24), using Lemma 9 and the bound
(5.20) yields the bound (5.41). The leading contributions to the energy of
the overlapping R subcontours (ov

i of the R-contour ( stem from the over-
lapping triangles Tov

i of (ov
i . An edge of an overlapping triangle can in

general coincide with either one of the following��a $-edge, an |-edge, or
a *-link. A uniform lower bound to the energy =(( | C4) is obtained by
omitting the positive energies of these additional edges. K

Step 2. A generalized Dobrushin's transformation. Con-
sider an R-configuration C4 defined by the R-contours (1 , ..., ( l . Let (1 be
the contour we want to remove; (c

1=P"(1 is an open set, which has maxi-
mally connected components [O0 ,..., Or], where O0 is its exterior and
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[O1 ,..., Or] are the components of its interior. As (1 is a maximally con-
nected component of the complement of the bases, any R-contour in Oi is
not connected to (1 . Therefore, we can uniquely define a type {(Oi ) of
each interior, according to the type of base that separates (1 and the con-
tours in the interior of Oi . For simplicity assume that {(O0)=0. We would
like to lift (1 out of the R-configuration and fill the gap thus created with
bases of type 0. This can be done only if {(Oi )=0 for every i, which is not
the case in general. The extension of Dobrushin's trick(14) is first to apply
a translation Si to Oi such that

{(Si[Oi])=0, i=1,..., r (5.44)

It is easy to see that such translations S i over one lattice spacing exists; e.g.,
we can use vertical translations over one lattice unit in the upward
downward direction. Let us denote these translations by S and S&1, respec-
tively. Then the following relation holds for a base C0 of type 0:

{(Sn[C0])=&n mod 3 (5.45)

Now we will apply S to each Oi of type 1, and S &1 to each Oi of type 2.
Let ni=0, \1 be the exponent such that:

{(Sni[O i])=0, i=1,..., r (5.46)

In general the translations of the different Oi can now overlap, i.e.,

Sni[Oi] & S nj[Oj]{< (5.47)

As long as all intersections are bases of type 0, there is no problem, and a
new configuration with the contour (1 removed can be defined. This
corresponds to the situation in which the R-contours in Sni[Oi] and
Snj[Oj] do not intersect each other. We now prove that this is indeed the
case. Denote the inner R-contours in Oi by (i, 1 ,..., (i, qi

. Then we have the
following property of the interiors.

Lemma 11. For every R-contour (i, j in the interior Oi we have:

Sni[(i, j]/O� i ; j=1,..., qi (5.48)

where O� i denotes the closure of Oi , and where ni is an integer such that
{(Sni[O i])=0.

Proof. As Oi is a simply-connected set, and (i, j is closed, it is
enough to show that, for every edge e/(i, j we have S ni (e)/O� i . Let Pe be

510 Datta et al.
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the union of all closed triangles intersecting e either with an edge or a
vertex. Then we have

Pe/O� i , for all e/(i, j (5.49)

because otherwise (i, j would be connected to Oc
i . It is then obvious that

Sni[e]/Pe/O� i K (5.50)

Lemma 12. For any pair of R-contours (i1 , j1
and (i2 , j2

, the
following is true:

S ni1[( i1 , j1
] & Sni2(i2 , j2

]=<,

for all i1{i2 ; 1� j1�qi1
; 1� j2�qi2

(5.51)

Proof. As the R-contours (i1 , j1
and (i2 , j2

are closed complexes in
two distinct interiors Oi1

and Oi2
, we have

d((i1 , j1
, (1)�1 (5.52)

Hence we have

d((i1 , j1
, (i2 , j2

)�2 (5.53)

Fig. 6. The relative positions of v, v1 and v2 used in the proof of Lemma 12.
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Fig. 7. The three cases used in the proof of Lemma 12.

As Sni1 and Sni2 are both translations over one lattice unit, it is clear
that

Sni1[(i1 , j1
] & S ni2[(i2 , j2

]=< (5.54)

whenever d((i1 , j1
, (i2 , j2

)�3. Hence the only case that we need to
investigate is

d((i1 , j1
, (i2 , j2

)=2

Let us suppose that

Sni1[(i1 , j1
] & S ni2[(i2 , j2

]{< (5.55)

Then there should exist a vertex v such that

v # (1 , v # S ni1[(i1 , j1
], v # Sni2[(i2 , j2

] (5.56)

v If ni1
=ni2

, then we conclude that (i1 , j1
and (i2 , j2

have to intersect,
which is excluded by hypothesis.

v Hence, we must have ni1
=1 and ni2

=&1 (or ni1
=&1 and ni2

=1).
This means that there is v # (1 , v1 # (i1 , j1

and v2 # (i2 , j2
as Fig. 6.

The points v, v1 and v2 are related: S(v1)=v=S&1(v2). As the three
vertices belong to non-intersecting R-contours, there are only the three
possibilities shown in Fig. 7. Using the fact that the contour boundaries
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Fig. 8. The assignment of edges corresponding to the three cases shown in Fig. 7.

cannot subtend angles of ?�3 when the R-contours do not intersect, we
complete these diagrams as shown in Fig. 8. In each case we can show that
this leads to contradicting assignment of types to the rhombi containing
the vertex v. For example, in the case (a) we are forced to assign the types
of the rhombi as shown in Fig. 9. This contradicts the fact that S&1[2]=0
and S(1)=0, and hence is not allowed. We exclude the case (b) in the
same way. For case (c), consider the dotted hexagon. It is easy to see that
all rhombi with diagonals that are edges of the same hexagon must be of
the same type. This implies that: {(Oi1

)={(Oi2
) contradicting the condition

ni1
=&ni2

. K

Now we can complete the Dobrushin argument and the proof of
Proposition 8. We have shown that any R-contour ( can be removed,
meaning that the following operations were performed to obtain a new
configuration of non-overlapping R-contours.

Fig. 9. The assignment of types to the rhombi of Fig. 8(a).
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v Erase (

v Translate the interior Oi by Sni such that

{(Sni[O i])={(O0)=0 (5.57)

where O0 is the exterior of (. After the translations have been performed
some parts of the bases, which are now all of the type 0, will overlap.

v Fill up the gaps that were left with the base of type 0

The essential point of this construction is that the R contours which
lie in the interiors of (1 have been translated without intersecting each
other. The effect of the translation is to modify only the energies corre-
sponding to the potentials of range greater than two, which are corrections
to the leading terms. This concludes the proof of Proposition 8.

5.7. The Peierls Conditions for the Geometric R-Contours

There may be many R-contours which have the same support. Dif-
ferent R-contours whose supports coincide differ from each other in the
configuration of their constituent overlapping R-subcontours, e.g., in the
overlap numbers of the overlapping triangles, the multiplicity of the *-links
etc.

It is convenient to group the R-contours into equivalence classes
depending on their support. This allows us to obtain bounds on relative
probabilities entirely in terms of the supports of the R-contours. We define
equivalent contours as follows.

Two R-contours

( :=\ .
i= p

i=1

(ov
i +_ \ .

k=q

k=1

(st
k +

and

($ :=\ .
i= p

i=1

($ov
i +_ \ .

k=q

k=1

($ st
k +

are said to be equivalent iff they fulfill the following conditions:

v The standard subcontour (st
k # ( is identical to the standard subcon-

tour ($st
k # ($ for k=1,..., q. Each standard R-subcontour is given by a

unique configuration of $-lines.
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v The overlapping R-subcontour (ov
i # ( and the overlapping R-subcon-

tour ($ov
i # ($ have the same support, denoted by supp((� ov

i ), for i=1,..., p.

A geometric contour (� #(� ( p, q) is an equivalence class of R-contours,
i.e.

(� ( p, q)#(� :={(:=\ .
i= p

i=1

(ov
:i +_ \ .

k=q

k=1

(st
k + } supp (ov

:i

=supp (� ov
i for 1�i�p= (5.58)

where the subscript : is used to label the different R-contours which
have overlapping subcontours of identical support. Like an R-contour,
a geometric contour can also be decomposed into overlapping and
standard subcontours:

(� ( p, q) = \ .
i= p

i=1

(� ov
i +_ \ .

k=q

k=1

(st
k +

=: (� ov _ (� st (5.59)

where the symbol (� ov
i denotes the ith overlapping geometric subcontour. It

follows from (5.58) that all R-contours constituting a geometric contour
have the same support.

We can associate a unique number rov
i to the support supp((� ov

i ) which
is defined as follows:

rov
i :=minimum number of (distinct) rhombi in which

supp (� ov
i can be decomposed (5.60)

For simplicity we shall often use the symbol (� to denote both the
geometric contour and it support.

Each overlapping R-subcontour (ov
:i is characterized by a configura-

tion of overlapping triangles, each of which is labeled by an even overlap
number. The R-subcontours belonging to a given geometric subcontour (� ov

i

differ from each other in the distribution and overlap numbers of their
overlapping triangles. Since each of these rov

i rhombi is an overlapping
rhombus, the following bound is satisfied:

aov
:i �rov

i (5.61)
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where aov
:i is defined through (5.19), the subscript : labelling the different

R-subcontours belonging to (� ov
i . Let Prob4 (� denote the probability of

occurrence of an R-contour with support supp (� , with support through
(5.58) in P4 . To compute this probability we need to sum over all possible
R-contours which belong to (� .

Proposition 13. There exist positive constants U0 , d0 and d1 such
that, for all U>U0 , ;�U>d0 and ;�U 3>d1 , the probability Prob4((� ( p, q))
satisfies the bound

Prob4((� ( p, q))� `
i= p

i=1

e&;U&1D1ri
ov
_ `

k=q

k=1

e&;U&3D2 |2k
st | (5.62)

where D1 and D2 are positive constants depending on U0 , d0 and d1 .

Proof. The probability Prob4((� ( p, q)) can be expressed in terms of
the probability Prob4((( p, q)) that an R-contour (( p, q) occurs in a given
R-configuration. Using Proposition 8 we obtain the following bound.

Prob4((� ( p, q))= :
[( # (� ]

Prob4((( p, q))

� `
i= p

i=1
\ :

( :i
ov # (� i

ov
:�1:

e(&;J3(U ) a:i
ov)+_ `

k=q

k=1

e(&;K3(U ) |2k
st | ) (5.63)

Next we need to estimate the sum over : in the last line of (5.63). Each
overlapping subcontour with a given support is obtained by the projection
of a set of faces (not necessarily connected) of an interface. The number of
faces of an interface which projects onto the overlapping R-subcontour (ov

i

is equal to (aov
:i +rov

i ). Since all the overlapping R-subcontours in (� ov
i have

the same support, it is possible to find an edge, which belongs either to a
base or to a standard R-subcontour, such that it intersects all these over-
lapping R-subcontours at a fixed vertex. (The choice of such an edge is,
however, not unique). From these considerations it follows that we can
replace the sum over : by a sum over the variables ai , which take integer
values and correspond to the distinct sets of faces (each set belonging to an
interface I� ) which satisfy the following properties:

(1) The projection of the (disjoint) union of the faces in each such set
is connected to a fixed end of a fixed edge in the triangular lattice spanning
the plane P.

(2) Each set has ai+rov
i faces with a i�rov

i .

516 Datta et al.



Since the projection of each such set of faces is a connected set of
rhombi, at least one vertex of each rhombus is shared by another rhombus.
Hence each rhombus has at most three vertices to which the fixed edge can
be attached. The number of ways of placing ai+rov

i rhombi on the
supp (� ov

i , which is connected to a fixed end of a fixed edge in the triangular
lattice spanning P, is bounded by the number of ways of constructing a
connected set which consists of ai+rov

i rhombi and is connected to this
fixed vertex. This latter number, which we denote by N ov(ai ), is easily seen
to satisfy the bound

N ov(ai )�mai+ri
ov

(5.64)

with m=36, by the Ko� nigsberg Bridge Lemma.(44) Hence,

Prob4((� ( p, q))� :
a1�r1

ov,..., ap�rp
ov

ma1+r1
ov+ } } } +ap+rp

ov

_e&;(ai+ } } } +ap) J3(U )_ `
k=q

k=1

e&;K3(U )_|2k
st |

� `
i= p

i=1

m2ri
ov
e&;ri

ovJ3(U ) \ :
ai�0

maie&;ai J3(U )+
_ `

k=q

k=1

e&;K3(U )_|2k
st | (5.65)

It is easy to see that there exists positive constants U0 , d0 , such that for all
U>U0 and ;�U>d0 , the geometric series in parenthesis (on RHS of
(5.65)) converges. Hence, using the definitions (5.42) and (5.43) of J3(U )
and K3(U ) we find that for all U>U0 , ;�U>d0 and ;�U 3>d1 (where d1

is a positive constant) the following bound holds

Prob4((� ( p, q))� `
i= p

i=1

e&;U&1D1ri
ov
_ `

k=q

k=1

e&;U&3D2 |2k
st | (5.66)

where D1 and D2 are positive constants depending on U0 , d0 and d1 . K

5.8. Proof of the Rigidity of the 111 Interface

The rigidity of the 111 interface can be expressed in terms of the prob-
ability, Prob4(sx0

=&1 | b.c.2), that a lattice site x0=(x1 , x2 , x3), such
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that x1+x2+x3�1�2, is occupied by a ``&'' spin under the boundary con-
dition b.c.2 (2.21). To have sx0

=&1, the site x0 must be enclosed either by
a pyramid of the interface or by a least one Ising contour. As a result we
have that

Prob4(sx0
=&1 | b.c.2)� :

(� % x*0

Prob4 (� + :
# % x0

Prob4 # (5.67)

where x0* denotes the projection of the site x0 on the plane P4 . The first
term on the RHS of (5.67) arises when the interface has at least one
pyramid whose projection on P4 encloses the point x0*. The second term
arises when the ``&'' spin at x0 is enclosed by one or more Ising contours,
whose presence does not lead to a distortion of the interface from its per-
fect staircase structure around the site x0 . The above bound (5.67) is also
satisfied by the probability Prob4(sx~ 0

=1 | b.c.2), for x~ 0=(x1 , x2 , x3) with
x1+x2+x3� &1�2.

Hence, to prove the rigidity of the 111 interface we need to estimate
the terms on the RHS of (5.67). An estimate of the first term is given by
the following proposition.

Proposition 14. There exist positive constants U0 and b1 and b2 ,
such that for all U>U0 ;�U>b1 and ;�U 3>b2 , the following estimate is
true:

:
(� % x*0

Prob4 (� �C� 0e&c";U&3
(5.68)

where C� 0 and c" are positive constants depending on U0 , b1 and b2 .

Proof. From Proposition 13 it follows that

:

(� % x*0
(�

Prob4 (� � :

(� :=(� ov _ (� st
(� % x*0

`
( i

ov # (� i
ov

e&;U&1D1ri
ov

`
( k

st # (� st

e&;U&3D2 |2k
st | (5.69)

where we have used the following notations: (� ov
i denotes an overlapping

geometric subcontour (see (5.58)), while |2st
k | denotes the total number of

$-lines in the standard geometric subcontour (� st
k #(st

k . Further, an empty
product is equal to unity.
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RHS of (5.69)= :

(� ov{<

(� % x*0
(� :=(� ov _ (� st

`
( i

ov # (� ov

e&;U&1D1ri
ov
_ `

( k
st # (� st

e&;U&3D2 |2k
st |

+ :

(� ov=<

(� % x*0
(� :=(� st

e&;U&3D2 |2st |

= :

(� ov{<

(� % x*0
(� :=(� ov _ (� st

`
( i

ov # (� ov

e&;U&1D1ri
ov

_ _ `
( k

st # (� st

[(e&;U&3D2 |2k
st | &1)+1]&+ :

(� ov=<

(� % x*0
(� :=(� st

e&;U&3D2 |2st |

= :

(� ov{<

(� % x*0
(� :=(� ov _ (� st

`
( i

ov # (� ov

e&;U&1D1ri
ov

_{1+ :
n�1

:

(i=1,..., n)

( 1
st,..., ( n

st

( i
st

& (� ov{<

`
n

k=1

(e&;U&3D2 |2k
st|&1)= (5.70)

+ :

(� ov=<

(� % x*0
(� :=(� st

e&;U&3D2 |2st| (5.71)

where |2st| denotes the number of $-lines in the standard R-contour (st.
The term on the RHS of (5.70) is similar to (3.26) of Section 3.1. This

allows us to prove the bound (5.68) by using a method analogous to the
one used in that section. Each geometric contour (� appearing in the sum
on the RHS of (5.70) consists of a finite set of non-intersecting overlapping
geometric subcontours and a finite set of standard geometric subcontours
such that each standard geometric subcontour intersects at least one over-
lapping geometric subcontour in the set. We can alternatively express each
such (� as a connected set of auxiliary polymers, each polymer being a con-
nected set consisting of only a single overlapping geometric subcontour and
a finite set of standard geometric subcontours which intersect it. To each
term on the RHS of (5.71) we can associate a standard geometric contour
which is given by a standard R-contour. These considerations allow us to
express the RHS of (5.69) in terms of the elements of a more general
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polymer system, the polymers being referred to as spider contours (or S
contours, for brevity) and defined as follows:

An S contour, ` is a finite connected set of geometric R-subcontours,
containing at most one overlapping geometric R-subcontour. Hence, in
general

` :=(� ov _ { .
i=s

i=1

(st
i = (5.72)

where (� ov denotes an overlapping geometric subcontour.
In particular, an S contour can reduce to a single overlapping R-con-

tour (with no standard part) or to one standard R-contour. We refer to an
S contour which has no overlapping part as a standard S contour and
denote it by the symbol `st. The other S contours are said to be overlap-
ping and are denoted by the symbol `ov. Every standard R-subcontour
which belongs to an overlapping S contour, (defined through (5.72)),
necessarily intersects the overlapping geometric subcontour (� ov.

A given geometric R-contour (� , with support supp (� , can be built
from a finite family of intersecting S contours. For an S contour ` given by
(5.72), we define

|`| :=rov+ :
s

i=1

|2st
i | (5.73)

where rov denotes the minimal number of rhombi needed to cover the sup-
port of (� ov (see (5.60)). For a standard S-contour `st we define

|`st| :=|2st| (5.74)

which is the number of $-lines in it.
We define the weight '( } ) of an overlapping S contour `ov (defined

through (5.72)) to be

'(`ov) :=e&;U&1D1 rov
_ `

( k
st

& (� ov{<

e&;U&3D2 |2k
st | (5.75)

In (5.75) we use the convention that an empty product is unity. Hence the
case in which the S contour does not contain any standard part, is included
in (5.75). The corresponding weight for a standard S contour `st#(st is
defined as

'(`st) :=e&;U&3D2 |2st| (5.76)
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From (5.70), (5.71), (5.75) and (5.76) it follows that

:

(� % x*0
(�

Prob((� )� :
n�1

1
n !

:

(� % x*0 , connected

`1 ,..., `n
`1 _ } } } _ `n=(�

`
n

j=1

'(`j)� :
n�1

Cn

n
(5.77)

where

C := :
` % x*0

'(`) e |`| (5.78)

In obtaining the bound (5.77), we have made use of Lemma 3.5 of ref. 36
(as in (B.8) of the Appendix B). The proof of the bound (5.68) reduces to
the proof of the following lemma. K

Lemma 15. For each D$>0, there exist positive constants b1 and
b2 such that for all ;�U>b1 and ;�U 3>b2 the following bound holds:

:
` % x*0

'(`) e |`|�D$ (5.79)

Proof.

LHS of (5.79)= :
`ov % x*0

'(`ov) e |`ov|+ :
`st % x*0

'(`st) e |`st| (5.80)

Let us first evaluate the second term on the RHS of (5.80). To do this we
use the fact that the smallest standard R-contour consists of six $-lines.
Hence,

:
`st % x*0

'(`st) e |`st| � :
k�6

:

|`st|=k
`st % x*0

e&;U&3D2 kek (5.81)

Consider each standard S contour, appearing in the above sum, as a con-
nected graph which contains a fixed vertex x0*. The maximum coordination
number of each vertex in the graph is five, because a $-line which intersects
a given $-line at a fixed end, can emerge in any one of five directions
(in the triangular lattice spanning P). Then by the Ko� nigsberg Bridge
Lemma(44)

RHS of (5.81)�6 :
k�6

52ke&;U&3D2kek (5.82)
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The factor of six arises from the fact that there can be at most six different
$-lines in the rhombus model which contains the fixed site x0*. Let b>0
be a constant, such that for all ;�U 3>b, the geometric series in (5.82)
converges. Then for all ;�U 3>b,

:
`st % x*0

'(`st) e |`st| �e&6D4;U&3
(5.83)

where D4 os a positive constant depending on b. Next we need to evaluate
the first term on the RHS of (5.80). This term can be further decomposed
into two sums, depending on whether the fixed site x0* belongs to the over-
lapping subcontour of an S contour or not. Using the definition (5.72) of
an overlapping S contour, we can write

:
`ov % x*0

'(`ov) e |`ov|= :

(� ov % x*0

`ov

(`ov) e |`ov|+ :

(� ov % x*0

`ov % x*0

'(`ov) e |`ov| (5.84)

The second term on the RHS of (5.84) corresponds to the situation in
which the fixed vertex is necessarily contained in a R-standard subcontour
of the overlapping S contour.

Evaluation of the First Term on the RHS of (5.84). Let us
construct (� ov starting from x0*. Once a rhombus which has x0* as one of
its vertices is chosen, the next rhombus which intersects it can be placed in
twenty four different ways; it can intersect the first rhombus either at any
one of its four vertices or along any one of its four edges. Further, for inter-
section either along an edge, or at a vertex, there are three possible orienta-
tions of the pair of rhombi. This allows us to consider each rhombus as a
vertex of a connected graph which contains a fixed vertex. The fixed vertex
of the graph corresponds to the rhombus which contains the site x0*. There
are twelve different rhombi in the triangular lattice spanning P which con-
tains a given site. Then, by the Ko� nigsberg Bridge Lemma(44) the number,
N((� ov | n; x0*), of different ways of constructing an overlapping geometric
contour (� ov, such that it contains a fixed site x0*, and has rov=n, satisfies
the bound

N((� ov | n; x0*)�12d 2n
1 with d1=24 (5.85)

The overlapping geometric contour (� ov has at most (3n+1) vertices at
which a $-line can intersect it. Moreover, from each verte of (� ov there can
emerge at most four standard $-lines. Further, each such standard $-line
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can correspond to either one of two different pairs of rhombi. These
considerations yield the bound

:

(� ov % x*0

`ov

'(`ov) e |`ov|� :
n�1

12d 2n
1 e&;U&1D1n

_{8_(3n+1) :
k�1

52ke&(;U&3D2k)ek= (5.86)

Let b$1 and b$ be positive constants such that for all ;�U>b$1 and ;�U 3>b$
the series in n and k converges. Then for such values of ; and U the RHS
of (5.86) satisfies the bound

RHS of (5.86)�e&;U&3D6e&;U&1D5 (5.87)

where D5 and D6 are positive constants depending on b$1 and b$ respec-
tively.

Evaluation of the Second Term on the RHS of (5.84). To
evaluate this sum we make use of the fact that each standard R-subcontour
in `ov intersects (� ov. We construct `ov starting from the site x0* which now
belongs to a standard R-subcontour. If the standard R-subcontour which
contains x0* has m $-lines, then there are at most m+1 vertices at which
(� ov can intersect it. Moreover, there can be at most four standard $-lines
emerging from each of the (3rov+1) vertices of (� ov and there are two
possible orientations of each such pair of $ lines. From these considerations
we obtain

:

(� ov %% x*0

`ov % x*0

'(`ov) e |`ov|

� :
m�1

52meme&;U&3D2m

__(m+1) :
n�1

d 2n
1 e&;U&1n {8_(3n+1) :

k�1

52keke&;U&3D2 k=&
(5.88)

Let b"1 and b" be positive constants such that for all ;�U>b"1 and ;�U 3>b"
the series on the RHS of (5.88) converges. Then, for such values of ; and
U the following bound is satisfied:

RHS of (5.88)�e&;U&3D8e&;U&1D7 (5.89)
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where D7 and D8 are positive constants depending on b"1 and b" respec-
tively. Let

b1 :=max(b$1 , b"1) (5.90)

and

b2 :=max(b, b$, b") (5.91)

Then from (5.83), (5.87) and (5.89) it follows that for all ;�U>b1 and
;�U 3>b2

:
` % x*0

'(`) e |`|�C0e&c"�;�U 3
=: D$ (5.92)

where C0 and c" are positive constants depending on b1 and b2 respectively.
Hence D$ is a positive constant which can be made arbitrarily small by
making b1 and b2 large enough. This concludes the proof. K

To estimate the second term on the RHS of (5.67) we make use of the
result of the cluster expansion given in Lemma 5. This yields the following
proposition.

Proposition 16. There exist constants U1 , b3>0 such that for all
U>U1 and ;�U>b3 the following estimate is true:

:
# % x0

Prob4(#)�C� 1e&c"1;U&1
(5.93)

where C� 1 , c"1 are positive constants depending on U1 and b3 .

Proof. We have that

:
# % x0

Prob4 (#)� :

# % x0

D:
D % #

Prob4 (D) (5.94)

where Prob4 D denotes the probability of occurrence of a decorated con-
tour D in 4.

RHS of (5.94)�
[�D: D % #, # % x0

W(D)[�$D >D # D W(D$)]]

[�D >D$ # D W(D$)]
(5.95)

The symbol �$D is used to denote a sum over all finite compatible sets
D=[D$] of decorated contours which are compatible with D, the latter
being a decorated contour which encloses the site x0 . In the denominator
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we have an unrestricted sum. The result of the cluster expansion
[Lemma 5] can be applied to both these sums to yield

RHS of (5.95)

� :

# % x0

D:
D % #

W0(D) exp {& :
N�1

1
N !

:

(i)6 (ii)
D1 ,..., DN

9 T([D1 ,..., DN])= (5.96)

where (i)6 (ii) refer to the following conditions:

(i) D1 _ } } } _ DN#P is a connected set (a cluster),

(ii) P & D{<.

We have made use of the fact that |W(D)|�W0(D), where W0(D) is
given by (3.32).

RHS of (5.96)� :

# % x0

D:
D % #

W0(D) exp {&|D| :
N�1

1
N !

:*
P

|9T(P)|
|P| = (5.97)

where

|D|= :
# # D { |#|+ :

B & #{<

g(B)=
and the symbol �*P denotes a sum over all clusters P which contain a fixed
site. The bound (5.93) is then obtained by making use of (3.32) and the
bound (3.51) on the RHS of (5.97). K

From the Propositions 14 and 16 it follows that for x0=(x1 , x2 , x3)
such that x1+x2+x3�1�2, we have the following upper bound on the
probability Prob4(sx0

=&1):

Lemma 17. There exist positive constants U� 0 , D� 0 and D� $0 such that
for all U>U� 0 , ;�U>D� 0 and ;�U 3>D� $0 the following bound is satisfied:

Prob4(sx0
=&1)�[C� 0e&c";�U 3

+C� 1e&c"1;�U]

for x0=(x1 , x2 , x3) and x1+x2+x3�1�2 (5.98)

5.9. Proof of Theorem 2

We now have all the estimates necessary to prove our main result on
the rigidity of the 111 interface, i.e., Theorem 2.
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Proof. For x=(x1 , x2 , x3) with x1+x2+x3�1�2, we have that

(sx)[b.c.2]=1&2_ lim
4ZZ3

Prob4(sx=&1 | b.c.2) (5.99)

where x* denotes the projection of the site x on the plane P.
Lemma 17 provides an upper bound to the probability Prob4(sx=

&1 | b.c.2) which is uniform in the volume 2. Introducing this bound,
(5.98), in (5.99) yields (2.40).

Similarly for x=(x1 , x2 , x3) with x1+x2+x3�&1�2, we have that

(sx)[b.c.2]=&1+2_ lim
4ZZ3

Prob4(sx=1 | b.c.2) (5.100)

which reduces to (2.41) by the analogue of Lemma 17 for Prob4(sx=
1 | b.c.2) with x1+x2+x3�&1�2. K

APPENDIX A. BOUND ON THE REMAINDER TERM OF THE
EFFECTIVE HAMILTONIAN

In this appendix we present a complete proof of a bound on the
remainder term for the effective Hamiltonians derived from the circuit
representation of ref. 33, which is missing in this reference. A proof of a
similar bound for a more general class of Hamiltonians will be given in
ref. 32. The bound is essential to control the temperature dependence of the
effective Hamiltonians. Therefore, we present the proof here in considerable
detail, although we certainly do not claim that the proof is new: the proof
of Lemma 18 (given below) closely follows ideas of ref. 9, and, in general,
our discussion follows the lines of ref. 33 and ref. 46.

A.1. Definitions

The Hamiltonian defined on a finite lattice 4/Zd, d�2 is given by

H4=H0+tV&+e Ne&+iNi (A.1)

where

H0=2U :
x # 4

W(x) c-
xcx (A.2)

and

V=& :
(xy)

c-
xcy+h.c. (A.3)
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where (xy) denotes a pair of nearest neighbour sites on the lattice. Let us
restrict our attention to the neutral case at half-filling, i.e., +e=+i=U. In
order to make the origin of various terms in the series expansions more
transparent, we do not set t=1 in this appendix, unlike in the main text.

The effective hamiltonian (for a given configuration S=[sx] of ions)
is defined through the relation

exp[&;Heff (;, S)]=TrFe
exp[&;H4] (A.4)

where the trace is over the electronic Fock space (denoted by Fe).
Iterating Duhamel's formulas

e&;(H0+tV )=e&;H0+|
;

0
d{ e&(;&{) H0(&tV ) e&{(H0+tV ) (A.5)

we obtain the Dyson series

e&;H4 :=e ;U(Ne+Ni) |
�

n=0
|

;

0
d{n |

{n

0
d{n&1 } } } |

{2

0
d{1 e(;&{n) H0(&tV )

_e&({n&{n&1) H0(&tV ) } } } e&({2&{1) H0(&tV ) e&{1H0 (A.6)

Hence

e&;H4 :=e ;U(Ne+Ni) :
�

n=0

tn :
(x1 y1) ,..., (xn yn)

|
;

0
d{n |

{n

0
d{n&1 } } } |

{2

0
d{1

_e(;&{n) H0c-
xn

cyn
} } } e&({2&{1) H0c-

x1
cy1

e&{1H0 (A.7)

As in ref. 33 we introduce the set C(4) of (classical) configurations
associated to the electron subsystem. An element X # C(4) is a finite
sequence X=(x1 ,..., xm) of distinct sites in 4. The state |X ) # Fe ,
associated to X # C(4) is defined as follows:

|X ) :=[c-(x1) } } } c-(x1)]P |0) (A.8)

where |0) # C(4) denotes the vacuum.
The symbol P denotes a total ordering of the sites in 4, chosen to

avoid ambiguities in the definition of the phase in (A.8). For convenience
we choose the spiral order(9) for d=2 and an analogous ordering for d�3.
This ordering is chosen to have the property that, for any finite set X/4,
the set [X$]=[x # Zd; xPX ] of lattice sites which are smaller than X, or
belong to X, is finite.
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For a given sequence of pairs of nearest neighbour sites, ((x1 y1) ,...,
(xn yn) ), let

=j |Xj)=c-
xj

cyj
|X j&1) for 1� j�n (A.9)

where each =j=\1. [Note that |Xj |=|Xj&1| for j=1,..., n.]
Setting {0=0, {n+1=; and X0=Xn=X we obtain

TrFe
e&;H4 := :

x0 , ..., xn # C(4)

e ;U(Ne+Ni) :
�

n=0

tn { `
n

j=0

(Xj | e&({j+1&{j) H0 |Xj)=
_(X | _`

n

j=0

c-
xj

cyj &P
|X ) (A.10)

Note that

H0 |Xj)=e(Xj ) |X j) (A.11)

where

e(Xj ) :=2U_[number of sites in Xj for which W(x)=1, (i.e., sx=1)]

(A.12)

As in ref. 33, we introduce the notion of trajectories. Let {i be a positive
integer variable (with {0=0 and {n+1=;) which we refer to as the ``time.''
A trajectory `=`({i ) is a sequence x({0), x({1),..., x({n+1) of sites in 4 such
that either

{i{{i+1 with x({i )=x({i+1)

or

{i={i+1 with x({i ) and x({i+1) being nearest neighbour
sites on the lattice

This last case we describe as a jump. Let

J(`) :=[(x({i ) x({i+1)) | {i={i+1 ; x({i ), x({ i+1) # `] (A.13)

denote the set of jumps in the trajectory `. Let T=[`] denote a set of
non-intersecting trajectories. If g is a function on the trajectories, then we
define a ``sum'' over sets of trajectories as follows:

:|̀ g(`) :=1+ :
n�1

:
(B

�
1 ,..., B

�
n)

:

Xi # C(4)
(X0 ,..., Xn)

I[(i), (ii)] |
;

0
d{n } } } |

{2

0
d{1 g(`) (A.14)
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where B
�

i=[(xi yi)] denotes a set of nearest neighbour sites on the lattice.
By I[E] we mean the indicator function of the event E; in particular,
I[(i), (ii)] in (A.14) vanishes unless

(i) the relation (A.9) holds

(ii) X0=Xn .

Hence the RHS of (A.10) can be expressed as a ``sum'' over sets of
non-intersecting trajectories:

exp[&;Heff (;, S)]=e ;UNi :

T

| e ;U |T|=(T) `
` # T

e&2U |`| \ `
(xy) # `

t+
(A.15)

where |T| is the number of trajectories in T, and |`| is defined as follows:

|`| :=(vertical length of `) & ([x: sx=+1]_[0, ;]) (A.16)

and

=(T) :=(X | T `
` # T

\ `
(x({i) x({i+1)) # J(`)

c-
x({i+1) cx({i)+ |X )=\1 (A.17)

The symbol T denotes that the product is ``time-ordered'', and =(T)
denotes the sign of the permutation of the electrons under the action of T.

A.2. Circuit Representation

To a given ion configuration S and a given set of trajectories T we
associate a set, 0, of oriented circuits as follows:

Vertical segments of trajectories located on sites x # 4 with sx=+1,
will be considered as up-oriented components of circuits; vertical segments
of the complement of the set of trajectories in 4_[0, ;], located on sites
with sx=&1, are considered as down-oriented components of circuits. On
each horizontal bond at which a jump takes place, we draw a segment with
an arrow in the direction of the jump. The vertical segments together with
the horizontal jumps form oriented closed circuits. More precisely, an
oriented closed circuit, |, is a maximally connected component of the
oriented segments of the trajectories. Let 0=[|1 } } } |n] denote a finite set
of such circuits. The space of all circuits compatible with an ion configura-
tion S is denotes by W(S) [compatibility means that segment of circuits
are oriented upwards if they are located on sites occupied by ions and are
oriented downwards otherwise].
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Let ||| be the total length of the vertical segments of a circuit |, and
let p(|) # Z be the winding number of |. The latter can take positive or
negative integer values, with negative values indicating that | winds
around the ``time''-axis [0, ;] with a downward orientation.

The following two relations hold:

:
{ # T

|`|= 1
2 :

| # 0

( |||+;p(|)) (A.18)

|T|=|4|&Ni+ :
| # 0

p(|) (A.19)

As we are concerned with the half-filled case, we always have that
�| # 0 p(|)=0.

From (A.15), (A.18) and (A.19) we have that

e&;Heff (;, S)=e ;U |4| :

0
| =(0) `

| # 0

e&U ||| \ `
(xy) # |

t+ (A.20)

where �� 0 denotes a ``sum'' over all sets, 0, of non-intersecting closed
circuits (defined analogous to (1.14)) and =(0) is the sign of permutation
of the electrons under the action of the circuits. The following lemma is
crucial for the next step. Its proof closely follow ref. 9, and ideas from
ref. 46.

Lemma 18. There exists a function =(|) such that \0:

=(0)= `
| # 0

=(|)

So we can write

e&;Heff (;, S)=e ;U |4| :|̀ `
| # 0

z(|) (A.21)

with the weight, z(|), of a circuit, |, defined as follows:

z(|)==(|) e&U |||t j(|) (A.22)

where j(|) denotes the number of jumps in |.

Proof of Lemma 18. Let nx({n) denote the number of electrons at
the site x at the time {n . Then the set of sites x # 4 for which

W(x)+nx({n){1 (A.23)
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is said to define the defect set, Dn(S), for a given ion configuration S, at the
time {n .

The section, 1n(|), of a circuit |, at a time {n , is defined as follows:

1n(|) :=[x # [| & (the plane {={n)]] (A.24)

In particular, 10(|) is referred to as the initial (``time-zero'') section of the
circuit |, since {0=0. It is clear that each x # 1n(|) belongs to the defect
set Dn(S) (for n�0).

Let |1n(|)) denote the state in the electron Fock space, Fe , defined
as follows:

|1n(|)) :=\ `

s.t. sx=1
x # 1n(|)

c-
x+P

|0) (A.25)

where |0) denotes the vacuum. More generally, for a set, 0, of circuits, we
define the section at time {n to be

1n(0) :=[x # [0 & (the plane {={n)]] (A.26)

and the corresponding state to be

|1n(0)) :=\ `

s.t. sx=1
x # 1n(0)

c-
x+P

|0) (A.27)

The following relations hold:

(a)

|1i (|))=8B
�

i
|1i&1(|)) for 1�i�n (A.28)

where B
�

i=[(xi yi)] denotes a finite set of pairs of nearest neighbour sites,
and 8B

�
i

denotes the corresponding set of operators

8B
�

i
:=[c-

xi
cyi

] (A.29)

(b)

10(|)=1n(|) (A.30)

The above relation is due to the periodicity in the ``time'' direction.

Each circuit | is uniquely determined by the following

v its initial section 10(|) (and hence on the state |1n(|)) );
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v a sequence of operators 8B
�

i
,..., 8B

�
n
;

v a sequence of ``times'' {1 ,..., {n at which these operators act.

The sign =(|) of a circuit | is given by

=(|)= `
n

i=1

(1i (|)| 8B
�

i
|1i&1(|))

=(10(|)| 8B
�

n
} } } 8B

�
1

|10(|)) (A.31)

The second line follows from (a) and (b) above.
To prove the factorization property it is enough to consider a set, 0,

of circuits (compatible with an ion configuration S) that can be divided
into two mutually non-intersecting (``time''-periodical) subsets, denoted by
|B and |C . Each subset can be made up of several circuits. To each of 0,
|B and |C is associated a sign.

The sign of |B is given by

=(|B)=(10(|B)| 8B
�

n
} } } 8B

�
1

|10(|B)) (A.32)

The sign, =(|C), of the component |C is defined in an analogous
fashion, with the sequence of operators 8B

�
n
} } } 8B

�
1

replaced by 8C
�

m
} } } 8C

�
1
.

The set 0 is defined by an initial section 10D(=10(|D)) and a sequence
of operators 8D

�
1
,..., 8D

�
n+m

, which is a uniquely determined permutation of
the sequence 8B

�
1
,..., 8B

�
n
, 8C

�
1
,..., 8C

�
m
. Its sign =(0) is also defined by (A.32)

with the obvious changes. We need to show that the sign for 0 factorizes,
i.e.,

=(0)==(|B) =(|C) (A.33)

By iteration of the argument we obtain the factorization into the signs of
the individual circuits.

Let us first discuss the computation of the sign of a single compo-
nent |B . In terms of the vacuum |0) , the expression of the sign =(|B) takes
a very simple form. To obtain it, we observe that

(10B | 8q
B
�

n
} } } 8q

B
�

1
|10B) =(0| C10B

8q
B
�

n
} } } 8q

B
�

1
C*10B

|0) (A.34)

where C*10B
is a product of creation operators that creates the section

10B(=10(|B)), i.e.,

C*#0B
:=\ `

s.t. sx=1
x # 10B

c-
x+P

(A.35)
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The product

AB :=C10B
8B

�
n
} } } 8B

�
1
C*10B

(A.36)

is a monomial in creation and destruction operators that can be combined
into number operators, because of the required periodicity,

AB |0)==(|B) |0) (A.37)

of |B . The factorization of signs is a consequence of the fact that this
combination can be made in a well-defined fashion which is not affected by
the presence of other (compatible) circuits.

We choose the following procedure which we refer to as circuit
collapsing. Consider the string of operators appearing in the product AB .
For brevity we shall refer to each appearance of a destruction or creation
operator supported on a site x as an occurrence of x. We denote by S(AB)
(``shadow'' of AB) the set of sites x occurring in AB . We start with the
leftmost operator in the product AB (A.36). In order to yield a non-zero
contribution this has to be a destruction operator with support on some
site x, i.e., cx . We now move this operator through the operators present
to its right (i.e., downwards in time), using the anticommutation relations,
until we encounter the next occurrence of the site x in the product (A.36).
This is necessarily a creation operator, c-

x , since otherwise the successive
actions of these two operators would yield zero. Hence we obtain a factor

cxc-
x=1&nx (A.38)

times a phase : (1)
x (|B) (nx being the number operator for electrons at the

site x). This phase arises due to the anticommutation of the initial cx with
intermediate operators. All the operators which appear to the left of this
factor are not supported in x and, hence, we can move this factor to the
leftmost end of the string to obtain

AB=: (1)
x (|B)(1&nx) A� B (A.39)

where A� B satisfies

A� B |0) =: (1)
x (|B) =(|B) |0) (A.40)

and has two fewer occurrences of x.
Next, we repeat the above procedure for the string of operators defining

A� B and continue pulling out, in the same way, successive phases and
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factors 1&nx . Once all occurrences of x have been dealt with, we obtain
a product of factors (1&nx)k=1&nx and an overall phase :x(|B), so that

AB=:x(|B)(1&nx) A� B (A.41)

where A� B satisfies

A� B |0) =:x(|B) =(|B) |0) (A.42)

and has no occurrence of the site x: S(A� B)=S(AB)"[x].
We then repeat the whole procedure for A� B . At the end, once all the

sites x in S(AB) have been exhausted, one obtains that the whole of AB

has ``collapsed'' into factors 1&nx times a numerical factor. A simple
replacement in (A.37) shows that this factor must equal '(|B). That is,

AB==(|B) `
x # S(|B)

(1&nx) (A.43)

We are now ready to prove the factorization property that we need:
Let 0 be a family of circuits and let it be decomposed into two (``time-peri-
odical'') subfamilies of circuits, |B and |C . Then

=(0)==(0B) =(0C) (A.44)

We can write |C via an operator

AC :=C10C
8C

�
m

} } } 8C
�

1
C*10C

(A.45)

[with 10C=10(|C)], such that

AC |0)==(|C) |0) (A.46)

We shall use the following two consequences of the compatibility
(i.e., mutual non-intersection) of the two components |B and |C :

(C1) The monomials C*10B
and C*10C

have disjoint support, so that

|10D) =$C10B
C*10C

|0) (A.47)

where $ is a phase factor. Hence,

=(0)=(0| AD |0) (A.48)

with

AD :=C10C
C10B

8D
�

n+1
} } } 8D

�
1
C*10B

C*10C
(A.49)
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(C2) The occurrence of a creation operator c-
x in factors of AB

implies that the site x becomes, or continues to be, part of the support of
|B at least until there is a further occurrence of a destruction operator cx .
In particular since |B and |C do not intersect, we have the following
property:

Between an occurrence of cx in factors of AB and the preceding
(i.e. immediately to the right) occurrence of c-

x in factors
of AB , there cannot be an occurrence of x in factors of AC (A.50)

Moreover, as the whole set 0 is periodic in the ``time''-direction, we have
that each occurrence of cx in AD must be preceded by an occurrence of c-

x .
Combining this observation with (C2) we obtain the last property needed:

(C3) Between an occurrence of c-
x in factors of AB and the

immediately preceding occurrence of cx in factors of AB , there is an even
number of occurrences of x in factors of AC . Of course, these occurrences
correspond to alternating creations and destructions. The same property
holds after the last occurrence of cx in factors of AB and before the first
occurrence of c-

x in factors of AB .

From (C1)�(C3) we conclude that the ``collapse'' of AB gives exactly
the same factor as in the absence of the component |C . Indeed, the last
occurrence of a site x in factors of AB is a destruction operator, that we can
displace up to the previous occurrence to produce a factor 1&nx . Between
these two occurrences three is no occurrence of x in factors of AC because
of (C2). Hence cx commutes with all the operators 8C

�
i
encountered during

the displacement (recall that such operators are monomials of even degree).
Thus, the phase acquired during this displacement only depends on the
operators in AB and hence it is the same phase : (1)

x (|B) obtained when
collapsing the component |B in the absence of any other circuit. Moreover,
by (C3) the operators in AD located to the left of the factor 1&nx ,
obtained in the above manner, involve an even number of creation and
destruction operators supported in x. Therefore, we can freely move this
factor 1&nx all the way to the left to obtain

AD=: (1)
x (|B)(1&nx) A� D (A.51)

where A� D has two fewer occurrences of x in factors of AB but otherwise
satisfies (C1)�(C3). Iterating this process we collapse AB exactly as done in
(A.39)�(A.43). We obtain

AD==(|B) `
x # S(|B)

(1&nx) AC (A.52)
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Combining this expression with (A.48) and (A.46) we get the desired
factorization (A.44). K

A.3. Cluster expansion

The logarithm of

:

0
| `

| # 0

z(|)

can be developed in a cluster expansion. Adapting Theorem 3.1 of ref. 36 to
our case (in which one variable, the ``time,'' is continuous) we have the
following result:

if |:
| # Wj (S)

|z(|)| e |||/[(x, {) # |]�Cj with :
j�0

Cj<1 (A.53)

(where / denotes the characteristic function) then we have an absolutely
convergent cluster expansion given by

:

0
| `

| # 0

z(|)=exp { :
n�1

1
n ! |:

|1 } } } |n

.T
n (|1 ,..., |n) `

n

k=1

z(|k)= (A.54)

Here Wj (S) is the space of circuits compatible with the ion configura-
tion S and having j jumps, and .T

n (|1 ,..., |n) is a combinatoric function
on families of circuits whose value is zero whenever [|1 ,..., |n] is not a
cluster (i.e., whenever the support of the set of circuits [|1 ,..., |n] is not
connected in Rd+1).

Furthermore, we shall use the following bound, (A.55), which is an
extension of Lemma 3.5 of ref. 36:

|:
|1 # Wj1

(S)

|:
|2 # Wj2

(S)

} } } |:
|n # Wjn

(S)

/[(x, {) # |1]

_|.T
n (|1 ,..., |n)| `

n

k=1

|z(|k)|�(n&1)! `
n

k=1

Cjk
(A.55)

We show that (A.53) holds in our case as follows. For j{0, (i.e., j�2) we
have
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|:
| # Wj (S)

|z(|)| e |||/[(x, {) # |]� |:
| # Wj (S)

t je&(U&1) |||/[(x, {) # |]

�(2dt) j _|
;

0
d{ e&(U&1) {&

j

�(2dt) j \1&e&;(U&1)

U&1 +
j

(A.56)

For U large enough, U&1�cU, for some constant c with 0<c<1. Hence

RHS of (A.56)�Cj (A.57)

where we define

Cj :=\2dt
cU+

j

for j�2 (A.58)

For j=0 we find

C0=e&;cU (A.59)

From (A.58) and (A.59) it follows that the bound (A.53) is satisfies for U
and ; large enough.

Hence we obtain an expression for the effective hamiltonian:

Heff (;, S)=&U |4|&
1
;

:
n�1

1
n ! |:

|1 } } } |n

.T
n (|1 ,..., |n) `

n

k=1

z(|k) (A.60)

We define the support, supp |, of a circuit |, to be its orthogonal
projection onto the plane {=0. Hence supp |/4.

Let A/4. The potential 0A(;, SA) is introduced as follows:

8A(;, SA)=&
1
;

:
n�1

1
n ! |:

|1 } } } |n

/ _ .
n

k=1

supp |k=A&
_.T

n (|1 ,..., |n) `
n

k=1

z(|k) (A.61)

where SA denotes the restriction of the ion configuration S to A/4.
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Lemma 19. There exists positive constants U0>>t and ;0 , such
that for all U>U0 and ;>;0

|8A(;, SA)|�c1

(c2 t)n(A)

U n(A)&1 for |A|�2 (A.62)

for some constants c1 and c2 , with n(A) being the minimum length of a
closed path which passes through all sites of A.

Proof. Let j1 ,..., jn denote the number of jumps for the circuits
|1 ,..., |n , such that [|1 ,..., |n] forms a cluster with support equal to A.

If �n
k=1 supp |k=A then �n

k=1 jk�n(A) for any |1 ,..., |n , then

|8A(;, SA)|�
1
;

:
n�1

1
n!

:

�k jk�n(A)
j1 ,..., jn�0

|:
|1 # Wj1

(S)

} } } |:
|n # Wjn

(S)

_/_ .
n

k=1

supp |k=A& |.T
n (|1 ,..., |n)| `

n

k=1

|z(|k)| (A.63)

Now,

:
x # A

|
;

0
d{ /[(x, {) # |1]

1
||1|

=1

for any |1 with supp |1/A. Introducing this identity into the above equa-
tion (A.63) yields

|8A(;, SA)|�
1
;

:
x # A

:
n�1

1
n !

:

�k jk�n(A)
j1 ,..., jn�0

|
;

0
d{

_ |:
|1 # Wj1

(S)

/[(x, t) # |1]
1

||1|

_ |:
|2 # Wj2

(S)

} } } |:
|n # Wjn

(S)

|.T
n (|1 ,..., |n)| `

n

k=1

|z(|k)| (A.64)

Note that |A|�2 implies that ji�2 for at least one i # [1 } } } n]. We have
assumed that j1�2.

Let us define z$(|, U ) to be equal to the weight z(|), but with explicit
dependence on the coupling constant U. Let us define
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F(U1 ,..., Un) := |:
|1 # Wj1

(S)

/[(x, t) # |1]
|z$(|1 , U1)|

||1|

_ |:
|2 # Wj2

(S)

} } } |:
|n # Wjn

(S)

_|.T
n (|1 ,..., |n)| `

n

k=2

|z$(|k , Uk)| (A.65)

and obtain an upper bound for this function. Eventually, we shall set
Ui=U for all i=1 } } } n.

Note that F(�,..., Un)=0. Moreover,

�
�U1

|z$(|1 , U1)|=&||1| |z$(|1 , U1)|

Hence,

} �
�U1

F(U1 ,..., Un)}� |:
|1 # Wj1

(S)

/[(x, t) # |1] |:
|2 # Wj2

(S)

} } } |:
|n # Wjn

(S)

_|.T
n (|1 ,..., |n)| `

n

k=1

|z$(|k , Uk)| (A.66)

From (A.55) we have that

} �
�U1

f (U1 ,..., Un)}�(n&1)! `
n

k=1

C$jk(Uk) (A.67)

where C$jk(Uk) is the same as Cjk
, except for the explicit dependence on Uk .

Since

F(U1 ,..., Un)=&|
�

U1

�
�V

F(V,..., Un) dV

we have that

F(U1 ,..., Un)�|
�

U1
} �
�V

F(V,..., Un) } dV

�(n&1)! `
n

k=2

C$jk(Uk) |
�

U1

C$j1(V ) dV (A.68)
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From (A.58) we have that

|
�

U1

C$j1(V ) dV�(2dt) j1 |
�

U1

(cV )& j1 dV

�_2dt
c &

j1 1
U j1&1

1

(A.69)

(since j1�2). Hence,

|F(U1 ,..., Un)|

�(n&1)!
2dt
c _ 2dt

cU1 &
j1&1

`
n

k=2
jk{0

_ 2dt
cUk&

jk
`
n

k=2
jk=0

C$0(Uk) (A.70)

Let i be the number of circuits without any jump. From (A.64) we have
that

|8A(;, SA)|�
1
;

:
x # A

:
n�1

1
n !

:

�k jk�n(A)
j1 ,..., jn�0

|
;

0
|F(U1 } } } Un)|

�|A| :
n�1

1
n

:
n

i=0

n !
(n&1)! i !

C i
0 :

�

m=n(A)

_ :

�k jk=m
j1 ,..., jn&1�2

(2dt�c) _2dt
cU&

m&1

(A.71)

Further, we have that

:

�k jk=m
j1 ,..., jr�2

1�2m&r (A.72)

It is true for all j when m=1, and by induction

:

�k jk=m
j1 ,..., jr+1�2

1= :
jr+1�2

:

�k jk=m& jr+1

j1 ,..., jr�2

1

�2m&r :
jr+1�2

2& jr+1=2m&(r+1)

540 Datta et al.



Using the bound (A.72) on the RHS of (A.71), we obtain

|8A(;, SA)|�|A| :
n�1

1
n

:
n

i=0

n !
(n&1)! i !

C i
02&(n&1) :

�

m=n(A)

2m (2dt�c)m

U m&1

=|A| _ :
n�1

1
n \

1
2

+C0 +
n

& :
m�n(A)

(4dt�c)m

U m&1 (A.73)

Now, since C0=e&;cU (A.59), there exists positive constants U0>>t
and ;0 , such that for all ;>;0 and U>U0 the sums over n and m on RHS
of (A.73) converge. Thus we obtain the bound (A.62) for some positive
constants c1 and c2 . K

Remark. For A/4 we have that (2.10)

g(A)=n(A)&A (A.74)

Set t=1. Then the bound (A.62) can be written as

|8A(;, SA)|�C1 \C2

U +
g(A)

(A.75)

for some positive constants C1 and C2 , with C2 �U<1. This is our desired
estimate.

APPENDIX B. PROOF OF LEMMA 5

From the standard results of cluster expansions(36, 42, 5, 6, 13) it follows
that a sufficient condition for the convergence of the series given in (3.42)
is given by

:
D % 0

W(D) e |D| <1 (B.1)

Hence, the task of proving Lemma 5 amounts to proving that the condi-
tion (B.1) is satisfied. In order to do so, we consider an auxiliary polymer
system whose elements (the polymers) are denoted by * and defined as
follows.

* :=(#, M#) (B.2)
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where # is a contour and M# is a decoration of #. A decoration of # is a
(possibly empty) set of bonds [B1 ,..., Bj ]/B, such that each bond inter-
sects #, i.e., Bi & #{< for 1�i� j. Hence a polymer * consists of a con-
tour # and a finite set of bonds which intersect its support. Let B# denote
the set of all bonds which intersect the contour #. Then M#/B# . For a
polymer *=(#, M#), we define

|*| :=|#|+ :
B # M#

g(B) (B.3)

The weight of a polymer is given by

w(*) :=e&;E(#) `
B # M#

(e&;GB&1) (B.4)

and satisfies the bound ||(*)|�|0(*) where

w0(*) :=e&;C1* |#| `
B # M#

(e ;C2 *g(B)
&1) (B.5)

Each decorated contour D can be considered to be the union of a finite
number of intersecting polymers, i.e., a connected cluster of polymers. The
weight of a decorated contour can then be expressed in terms of the
weights of its constituent polymers. The decomposition of a decorated con-
tour into polymers is however not unique. The condition (B.1) for the
model of decorated contours can be transcribed into a condition for the
auxiliary polymer system, by making use of the ``tree-graph approxima-
tion'' used in cluster expansions.(42, 36) We sketch the idea below, following
ref. 36. We first bound the LHS of (B.1) in terms of a sum over polymers:

:
D % 0

W(D) e |D| � :
n�1

1
n !

:

D % 0, connected

*1 ,..., *n
*1 _ } } } _ *n=D

`
n

j=1

w(*j ) e |*j | (B.6)

The fact that (B.6) is not an equality but only a bound is due to the
non-uniqueness of decomposition of a decorated contour into polymers.
A decorated contour D consisting of n polymers, *1 ,..., *n , can be repre-
sented by a connected, oriented graph, whose vertices are the polymers and
the lines between pairs of vertices corresponding to intersecting polymers.
The graph is oriented by introducing an ordering of the vertices. Let Gn be
the corresponding complete graph, i.e., the graph with n vertices, with a line
between each pair of vertices. The sum over the polymers on the RHS of
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(B.6) can be bounded by a sum over all tree graphs of the corresponding
complete graph. Hence, we can write

:
D % 0

W(D) e |D| � :
n�1

1
n !

:
T/Gn

:
*1 % 0

} } } :
*n

`
n

j=1

w(*j ) e |*j | (B.7)

where T denotes a tree graph.
From Lemma 3.5 of ref. 36 it follows that

:
T/Gn

:
*1 % 0

} } } :
*n

`
n

j=1

w(* j ) e |*j |�(n&1)! C n (B.8)

where

C := :
* % 0

w0(*) e2 |*| (B.9)

with w0(*) being defined through (B.5). Hence,

:
D % 0

W(D) e |D| � :
n�1

C n

n
(B.10)

The series on the RHS of (B.10) converges to C�(1&C ) if C<1, which
is <1 if C<1�2. Hence the proof of (B.1), and hence of Lemma 5, is
completed by proving the following lemma.

Lemma 20. For each C$>0, there exist constants *0 and b0 such
that for all *<*0 and ;*>b0 one has the bound

:
* % 0

w0(*) e2 |*|�C$ (B.11)

where w0(*) is given by (B.5).

Proof. For convenience we consider the sum

Zpol := :
* % 0

w0(*) ea |*|�C$ (B.12)

for a constant a>0, and set a=2 at the end of the proof. Let k0 be the
smallest positive integer for which

C2;(*cdea)k0�1 (B.13)
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where cd=36. We define

: :=C2;(*cd ea)k0 (B.14)

Let x=C2;*k and x0=C2;*k0. Then for k>k0 we use the bound
ex&1�xex and for k�k0 we use the bound ex&1<ex. It follows from
(B.3), (B.5), and the above bounds, that

w0(*) ea |*|�e&;C1* |#|ea |#|__ `

g(B)�k0

B # M#

e ;C2*g(B)eag(B)&

__ `

g(B)>k0

B # M#

;C2 * g(B)e ;C2*g(B)eag(B)& (B.15)

We have that

:
B # M#

* g(B)� :
B & #{<

* g(B)� :
x # #

:
B % x

* g(B)

|B|
� :

x # #

:
B % x

* g(B)

2

�|#| :*
B

* g(B)�|#| :
k�3

:*
B:

g(B)=k

*k�|#| :
k�3

ck
d *k (B.16)

The symbol �x # # denotes the sum over all sites x # 4 for which at least one
nearest neighbour bond of the lattice, which contains the site x, is intersec-
ted by a face in #. There are 2 |#| such sites in the 4. The symbol �*B
denotes the sum over all B 's containing a fixed point. For the last
inequality we used the Ko� nigsberg Bridge lemma [ref. 44, pp. 464�465],
which gives cd=(2d )2, d being the dimension of the lattice, i.e., cd=36.

Hence, we obtain the uniform bound

`
B # M#

e ;C2*g(B)
�e ;C3 *3 |#| (B.17)

with

C3 :=
C2c3

d

1&cd*
(B.18)

provided

cd*<1 (B.19)
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For convenience we define

a0 :=;(C1 *&C3*3)&a (B.20)

Then, if (B.19) is satisfied, we have that

w0(*) ea |*|�e&a0 |#|__ `

g(B)�k0

B # M#

eag(B)& (B.21)

__ `

g(B)>k0

B # M#

;C2* g(B)e ;C2*g(B)eag(B)& (B.22)

Hence,

:
* % 0

w0(*) ea |*|� :
j�0

1
j!

:

Bi & #{<

#, B1 ,..., Bj
# _ B1 _ } } } _ Bj % 0

e&a0 |#| _ `

g(B)�k0

1�i� j

eag(B)&

__ `

g(B)>k0

1�i� j

;C2 * g(B)e ;C2*g(B)eag(B)& (B.23)

The sum on the LHS of (B.23) is over all polymers which contain the
origin. For each terms in the sum on the RHS of (B.23), the origin can be
contained either in the contour of a polymer and�or in one or more of the
bonds intersecting it. This sum can be bound by a sum over all polymers
for which the origin is contained in their respective contours. We refer to
such a polymer as a pinned polymer. More precisely, a pinned polymer * is
defined by the connected sequences #, B1 ,..., Bj such that # % 0. The con-
tribution of each pinned polymer must be multiplied by the number of
translations containing the origin. Since for all i, Bi & #{<, this number
is bounded by

} .
1�i� j

Bi># }� :
1�i� j

|Bi |&1� :
1�i� j

(g(Bi )&1) (B.24)

since |B|�g(B). The factors of ``&1'' arise from the fact that each bond B
must intersect the contour #. Starting from a given contour # containing the
origin, a pinned polymer can be constructed by successively adding bonds
which intersect it. For a given #, the sum over decorations can be split into
a sum over decorations with ``small'' bonds, i.e., B with g(B)�k0 , and a
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sum over decorations with ``large'' bonds, i.e., B with g(B)>k0 . This gives
the following estimate:

Zpol � :
# % 0

e&a0 |#| :

g(Bi)�k0

j�0, [B1 ,..., Bj ]/B#

:

g(B$i)>k0

j $�0, [B$1 ,..., B$j $]/B#

__ :
1�i� j

(g(Bi )&1)+ :
1�i� j $

(g(B$i )&1)& (B.25)

__ `
1�i� j

eag(Bi)&_ `
1�i� j $

;C2 * g(B$i)eag(B$i)& (B.26)

If both j�1 and j $�1 then (since g(B)�3) the sum of the two sums in
parenthesis in (B.25) can be bounded by the product of the two sums, such
that the first sum can be combined with the first factor of (B.26) and the
second sum with the second factor. The result is

Zpol � :
# % 0

e&a0 |#| {1+ :

g(Bi)�k0

j�1, [B1 ,..., Bj ]/B#
\ :

1�i� j

g(Bi )&1+

__ `
1�i� j

eag(Bi)&= (B.27)

_{1+ :

g(B$i)>k0

j $�1, [B$1 ,..., B$j $]/B#
\ :

1�i� j $

g(B$i )&1+

__ `
1�i� j $

;C2 * g(B$i)eag(B$i)&= (B.28)

The cases with j=0 or j $=0 have been incorporated by adding 1 to each
factor. Next, we estimate the sums in (B.27).

The sum in (B.27) can be treated with a ``reverse'' high-temperature
expansion, i.e., resummation, as follows.

:

g(Bi)�k0

j�1, [B1 ,..., Bj ]/B#
\ :

1�i� j

g(Bi )&1+_ `
1�i� j

eag(Bi)& (B.29)

� :

g(Bi)�k0

j�1, [B1 ,..., Bj ]/B#
\ :

1�i� j

g(Bi )+_ `
1�i� j

eag(Bi)& (B.30)
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=
d

da
:

g(Bi)�k0

j�0, [B1 ,..., Bj ]/B#
_ `

1�i� j

eag(Bi)& (B.31)

=
d
dt _ `

g(B)�k0

B # B#

(eag(B)+1)& (B.32)

= :

g(B)�k0

B # B#

g(B)
eag(B)

eag(B)+1
`

g(B$)�k0

B$ # B#

(eag(B$)+1) (B.33)

�_ :

g(B)�k0

B # B#

g(B)& `

g(B)�k0

B # B#

ea$g(B) (B.34)

=_ :

g(B)�k0

B # B#

g(B)& exp \a$ :

g(B)�k0

B # B#

g(B)+ (B.35)

with a$=a+(log 2)�3, guaranteeing that for all g(B)�3, exp(ag(B))+1�
exp(a$g(B)). The estimate of the sum over ``small'' decorations can now be
completed by using the bound

:

g(B)�k0

B # B#

g(B)= :
x # #

:

g(B)�k0

B % x

g(B)
|B|

�|#| :
k0

k=3

:*
B

g(B)=k

k

�|#| :
k0

k=3

ck
d k�C4 |#| (B.36)

with

C4=(k0+1)(cd )k0+1 (B.37)

At this point we have:

Zpol � :
# % 0

e&a0 |#|[1+C4 |#| eC4 a$ |#|] (B.38)

__1+\ :

g(B$i)>k0

j $�1, [B$1 ,..., B$j $]/B#
\ :

1�i� j $

g(B$i )&1+

_ `
1�i� j $

;C2U &g(B$i)eag(B$i)+& (B.39)
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The second term in (B.39) represents a sum over the ``large'' decora-
tions. Let us denote this term by L, i.e.,

L := :

g(B$i)>k0

j $�1, [B$1 ,..., B$j $]/B#
\ :

1�i� j $

g(B$i )&1+
_ `

1�i� j $

;C2U &g(B$i)eag(B$i) (B.40)

and find an upper bound for it. We first make some simplifying estimates.
Using k0�3 and |#|�6 one can see that

1+C4 |#| eC4a$ |#| �C4 |#| eC4a" |#| (B.41)

with,

a"=a+1�4 (B.42)

For convenience we introduce the notations

B#, >k0
=[B # B | B & #{<, g(B)>k0] (B.43)

and

;� =;C2 , z=*ea (B.44)

Using the trivial observation

:
[B1 ,..., Bj ]/B#, >k0

( } )�
1
j !

:
B1 ,..., Bj # B#, >k0

( } ) (B.45)

we obtain

L� :
j�1

1
j !

:
B1 ,..., Bj # B#, >k0

\ :
1�i� j

g(Bi )&1+ `
1�i�n

;� z g(Bi)

� :
j�1

:
B1 # B#, >k0

} } } :
Bj&1 # B#, >k0

_ `
1�i� j

;� z g(Bi)&
_ :

Bj # B#, >k0
\ :

1�i� j

g(Bi )&1+ ;� z g(Bj) (B.46)
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We have that

:
Bj # B#, >k0

\ :
1�i� j

g(Bi )&1+ ;� z g(Bj)

� :
x # #

:

g(Bj)>k0

Bj % x \ :
1�i� j

g(Bi )&1+ ;� z g(Bj) (B.47)

The sum over Bj is independent of the choice of the point x. Hence

RHS of (B.47)�2 |#| :
kj�k0

[ g(B1)&1+ } } } + g(Bj&1)&1+k j&1]

_ :*
Bj

g(Bj)=kj

;� zkj (B.48)

Iterating the above steps, we obtain the following upper bound to the con-
tribution of the large decorations:

L� :
j�1

|#| j

j !
:

k1>k0

} } } :
kj>k0

_\ :
j

i=1

ki&1+ `
j

i=1
\ :*

Bi
g(Bi)=ki

;� zki+& (B.49)

Since, ki>k0�3, we have that

:
j

i=1

(ki&1)� `
j

i&1

(ki&1) (B.50)

Each factor of (ki&1) can be inserted into the sum over ki . This yields

L� :
j�1

|#| j

j !
`

j

i=1
\ :

ki>k0

(ki&1) :*
Bi

g(Bi)=ki

;� zki+

� :
j�1

|#| j

j !
`

j

i=1

:
ki>k0

(ki&1) cki
d ;� zki

� :
j�1

|#| j

j !
;� k0(cdz)k0 _ :

k�1

k(cdz)k&
j

� :
j�1

|#| j

j !
k0[;� (cd z)k0] _ cdz

(1&cd z)2&
j

(B.51)
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provided

cdz#cd ea*<1 (B.52)

By definition ((B.13), (B.14)) we have that

;� (cdz)k0#;C2(cd ea*)k0=:<1 (B.53)

Hence, if (B.52) holds, then

L � :
j�1

|#| j

j ! \
k0 cd z

(1&cd z)2+
j

� exp _ |#| k0cd z
(1&cd z)2&

:=exp(a1 |#| ) (B.54)

with

a1 :=
k0 cdz

(1&cdz)2 (B.55)

Hence from (B.39), (B.41) and (B.54) it follows that

Zpol � :
# % 0

e&a0 |#|C4 |#| eC4 a" |#|[1+ea2 |#|]

� :
# % 0

e&a0 |#| 2C4 |#| eC4a" |#|ea1 |#| (B.56)

since a1>0. Defining

q :=a0&log cd&a1&a"C4 (B.57)

we have that

Zpol � :
k�6

2C4 ke&kq (B.58)

�2C4

e&q

(1&e&q)2 (B.59)

provided

q>0 (B.60)
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Let us inspect the condition (B.60) in more detail. From the defini-
tions, (B.20), (B.55), (B.42) and (B.37), of a0 , a1 , a" and C4 , and (B.60),
it follows that (B.59) holds provided

*;X(*)>a+log cd+k0

cd*ea

(1&cd*ea)2+\a+
1
4+ (k0+1) ck0+1

d (B.61)

where

X(*) :=C1&
C2 c3

d*2

1&cd*
(B.62)

and k0 satisfied the bound (B.13). Before proceeding further, let us recall
the conditions which have been imposed on * in order to arrive at the form
(B.59). These are given by (B.19) and (B.52). Moreover, for (B.61) to
holds, it is necessary that X(*)>0. The inequalities (B.19) and (B.52) are
satisfied if

*<*1 :=(cdea)&1 (B.63)

Since X(*) is monotone decreasing, X(*)>0 can be satisfied by requiring
* to be smaller than the solution of X(*)=0, i.e.,

*<*2 :=
2

cd \1+�1+
4cdC2

C1 +
(B.64)

In order to satisfy (B.63) and (B.64) we choose *>*0 with

*0 :=(Bc2
dea)&1 (B.65)

where

B :=
1
2 \1+�1+

4cdC2

C1 + (B.66)

Note that B>1 since C1 , C2 and cd are positive.
The quantity q defined through (B.57) can be expressed as a function

of * and b :=;*. Next, let us determine b0 such that for all b>b0 and
*<*0 , (B.60) is satisfied. On the RHS of (B.61), k0 (expressed as a func-
tion of * and b) has to satisfy

k0=k0(*, b)>1&
log(C2cdeab)

log(*cd ea)
(B.67)
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This follows from the defining relation (B.13) for k0 . For all *<*0 this can
be achieved by choosing

k0=k� 0(b)=1&
log(C2 cd eab)
log(*0cdea)

=1+
log(C2 cd eab)

log(bcd )
(B.68)

where B is defined through (B.66). Let us denote the RHS of (B.61), with
the above choice k� 0 , by A(*, b), i.e.,

A(*, b)=a+log cd+
k� 0 *ea

(1&cd*ea)2+cd \a+
1
4+ (k� 0+1) ck� 0

d (B.69)

Recall that X(*) is monotone decreasing, and note that A(*, b), for a fixed
value of b, is monotone increasing in *. Hence, for all *<*0 we can satisfy
(B.61) by requiring that

bX(*0)>A(*0 , b) (B.70)

That (B.70) is satisfied for all b>b0 , for some b0>0, follows from the fact
that A(*0 , b) increases strictly less than linearly in b. More precisely,

A(*0 , b)=A0+A1 log(d0b)+A2(d0b)r+A3(d0b)r log(d0b) (B.71)

where A0 , A1 , A2 , A3 and d0 depend on C1 , C2 , ea and cd , and r is given
by

r=
log cd

log B cd
(B.72)

In particular,

d0=C2 cdea (B.73)

Since B>1 (see (B.66)), we have that r<1. This proves the convergence
of the series for Zpol and the bound (B.59).

It is now easy to see that, in fact, the bound C$ for Zpol as in the
statement of the lemma, can be made arbitrarily small by choosing b0

arbitrarily large. With k0=k� 0 , C$ is given by

C$(b)2c2
d _2+

log(C1b)
log(Bcd )& (C1b)r_

e&q(b)

(1&e&q(b))2 (B.74)
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where we have used the definitions of C4 (B.37) and k� 0 (B.68). The
constants d0 and B are defined in (B.73) and (B.66). The function q(b) is
bounded below by bX(*0)&A(*0 , b), which increases linearly in b. Then
again since r<1, C$(b) � 0 as b � �. K
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